
AD-AI0# 170 KNRAI. ELECTRIC CC PITTSFIELD MA ORDNANCE SYSTEMS F/4 9/2
ELECTRICAL CHARACTERIZATION OF ADVANCED MICROPROCESSOS. (Ul
JUN al 0 W HAJDUK, T M OSTROWSKI B NEWTON F30602-80-C-0041

UNCLASSIFIED RADC-TR-1-26 N1-2 ./mmmImi
IIIImIIhlIIIIIIIhlu
IIEEEIIIIIEE~lE
*IuuumuIIIIIuu
IIIIIIIEEIIEI
IIIIIIEEEEEEEE

LEVEUK
RADC-TR-8 -126
Final Technical Report
June 1981

ELECTRICAL CHARACTERIZATION
~OF ADVANCED MICROPROCESSORS

cc General Electric Company

Barney Hajduk, et al C44;

FF
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
. Air Force Systems Command

Griffiss Air Force Base, New York 13441
819 14 078

This report has been reviewed by the RADC Public Affairs Office (PA) and

is releasable to the National Technical Information Service (NTIS). At NTIS

it will be releasable to the general public, including foreign nations.

RADC-TR-81-126 has been reviewed and is approved for publication.

APPROVED: J?~Q /(-UI-

REGIS C. HILOW
Project Engineer

APPROVED: Y 4C L
DAVID C. LUKE, Colonel, USAF

Chief, Reliability & Compatibility Division

FOR THE COMANDER:
0

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removea from the ,RADC

mailing list, or if the addressee is no longer employed by your organization,

please notify RADC.(RBRA) Griffiss AFB NY 13441. This will assist.us in

maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED
SECURITY CLASSIFICATION O THIS PAGE (When O t Enterd) , RU4' / i RPOR DOCMENATIO PAE I READ INSTRUCTIONS

EPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

2. GOVT ACCESSION NO.1 3. RECIPENT'S CATALOG NUMBER

4. TITLE (end Su~b~tie) V 0 EOt&*fi go. e

. ELECTRICAL CHARACTERIZATION OF ADVANCED -/> ,inal fechnical Report

MICROPROCESSORS- June 1981/
6. PERFORM4G O'4G. REPORT NUMBEWtN/A

7. AUTHORf() 8, CONTRACT OR GRANT NUMBERfs)

Barney W. Hajduk, et al t _"30602-80-C-0041

1. • t.RG N -I-NM AO S 10. pROGRAM ELEMENT. PROJECT. TASKny AREA & WORK UNIT NUMBERSGeneral Electric Company 7d e Systems 2702F

100 Plastics Ave , / 23380187 (
Pittsfield MA 01201 n,__1._,________. _._. ___'

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REP TE)
Rome Air Development Center (RBRA) / n-" -981
Griffiss AFB NY 13441 / . 8 -oAGES ...

14 MONITORING AGENCY NAME & ADORESS(II different from Controlling Olfi-e . IS. SECURITY CLASS. 'o rhis report)

TN C LASSI FIED
Same SI DECLASSIFICATION, DOWNGRADING

F ASCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebseoect entered in Blockt 20, if different from Report)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Regis C. Hilow (RBRA)

9. KEY WORDS (Continue on reverse Side it necesary and Identity by block ntumber)

Microprocessor
Electrical Testing
Benchmark
1MIL-M-38510 Slash Sheet

t9. ABSTRACT (ContInue on reverse side If neceeary end identify by block number)
The objective of this effort was to develop functional and parametric
tests for selected microprocessors and to develop MIL-M-38510 slash sheets
for them. A test pattern and program were developed for the Z8001 and
data was taken and analyzed to determine its operating region. A general.
benchmark was also developed and used to compare the performance of the-
8086 and Z8000.

DD i A,''7 1473 EDITION OF 1 NOV DS 5S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (r *n Det. Entered)

/ 1! /0 / I;.

UNCLASS IFIED
SECURITY CLASSIFICATION OF THIS PAGIE(Whol Doe &iered,

UNCLASSIFIED
SECURITY CLASSIFICATION OF 1-11 PAGE'Wh,n Data E,,e-cfd

PREFACE

This Final Report was prepared by General Electric Ordnance Systems,
100 Plastics Avenue, Pittsfield, Massachusetts, for Rome Air Development
Center, Griffiss Air Force Base, New York, under contract F30602-80-C-0041.

It covers the period from January 1980 to December 1980. Mr. Regis C.
Hilow, RBRA, was the RADC Project Engineer.

The work on this project was performed by the Electronic Circuits
Engineering Operation and Components Engineering Unit. Project re-
sponsibility was held by Messrs. Thomas M. Ostrowski and Barney W. Hajduk
of Circuit Design Engineering. Key individuals who made significant
contributions to this report were Messrs. Bruce Newton, William Keller and
Richard English.

N~~TIS m>' &! ..

IA Dcc,
o

By_ . ..

Avi11
]

ini

CONTENTS

Page

LIST OF FIGURES ii

LIST OF TABLES iv

SECTION I. SUMMARY I-i

SECTION II. INTRODUCTION tI-i

SECTION III. BENCHMhRKING THE 8086 AND Z8001 I1-i

SECTION IV. CHARACTERIZATION OF THE Z8001 MICROPROCESSOR IV-I

SECTION V. TEST DEVELOPMENT FOR THE Z8000 V-i

APPENDIX A. Z8001 TASK BENCHMARKS A-I

APPENDIX B. 8086 TASK BENCHMARKS B-I

APPENDIX C. ARITHMETIC MIX COMPOSITION C-I

APPENDIX Do Z8001 ARITHMETIC MIX RESULTS D-1

APPENDIX E. 9086 ARITHMETIC MIX RESULTS E-I

APPENDIX F. CRT TERMINAL CONTROLLER MIX DEFINITION F-I

APPENDIX G. Z8001 TEST PROGRAMS G-i

iv

LIST OF FIGURES

Page

Figure 3-1 CR Terminal Controller Model 111-4

Figure 4-1 Test Vector Generation Circuit IV-4

Figure 4-2 Z8001 Test Program Flow Chart IV-6

Figure 4-3 Z8001 Load Circuit IV-7

Figure 4-4 Count of Vendor L's Passing Devices for Commercial IV-9

Limits

Figure 4-5 Count of Vendor L's Passing Devices for Commercial IV-10
Limits

Figure 4-6 Count of Vendor A's Passing Devices for Commercial IV-1I
Limits

Figure 4-7 Count of Vendor A's Passing Devices for Commercial IV-12
Limits

Figure 4-8 Count of Vendor A's Passing Devices for Military Limits IV-13

Figure 4-9 Count of Vendor A's Passing Devices for Military Limits IV-14

Figure 4-10 VIH vs. VCC at -550 C for Vendor L Devices IV-16

Figure 4-11 VIL vs- VCC at 125*C for Vendor L Devices IV-17

Figure 4-12 VIH vs. VCC at 125C for Vendor L Devices IV-18

Figure 4-13 VIL vs- VCC at 1250C for Vendor A Devices IV-19

Figure 4-14 Frequency vs, Temperature at 50% Duty Cycle for Vendor IV-20
L Devices

Figure 4-15 Frequency vs. Temperature at 40% Duty Cycle for Vendor IV-21

L Devices

v

Page

Figure 4-16 Duty Cycle vs. Frequency at -550c for Vendor L IV-22

Devices

Figure 4-17 Duty Cycle vs. Frequency at 125°C for Vendor L IV-23
Devices

Figure 5-1 Z8000 Block Diagram V-2

vi

LIST OF TABLES

Page

Table 3-1 Z8001/8086 Benchmark Performance Summary 111-2

Table 3-2 Task Benchmark Results 111-6

Table 3-3 Z8001 Execution Times 111-6

Table 3-4 8086 Task Execution Times 111-7

Table 3-5 Arithmetic Mix (Result Summary) 111-7

Table 3-6 8086 Cfr Terminal Controller Mix Benchmark Results III-10

Table 3-7 Z8001 CR Terminal Controller Mix Benchmark Results 111-12

Table 4-1 Device Serial Numbers IV-7

vii

SECTION I

SUMMARY

This report details the efforts performed on a 16-bit microprocessor
characterization contract for RADO. A general benchmark was developed and
used to compare the performance of the 8086 and Z8000. A test pattern was
developed and data was taken and analyzed to determine the operating region
of the Z8001. AC and DC tests supplied by the vendor were analyzed and a
preliminary analysis of the vendor's functional test was performed. A
MIL-M-38510 slash sheet (not included in this report) was developed for the
Z8001 and Z8002.

I-

SECTION II

INT RODUCT ION

This characterization was an extension of similar efforts performed for
other microprocessors on previous RADC contracts.

A general benchmark was developed and used to compare the performance
of the 8086 and Z8000. Section III of this report describes the results of
this benchmarking effort.

A test pattern and program were developed for the Z8001 and a charac-
terization was performed on a small sample of devices. Section IV describes
the characterization and analysis of data.

The evaluation of the functional tests for the Z8001 and Z8002 was
started on this contract. A list of tests required to check these devices
was prepared and submitted to the vendor to assist in the evaluation. The
vendor's AC and DC tests were evaluated and a MIL-M-38510 slash sheet was
developed. Evaluation of the functional test will be completed on a future
RADC contract. Section V of this report describes the review of the tests
for the Z8001 and Z8002.

]II-i1

SECTION III

BENCHMARKING THE 8086 AND Z8001

OBJECTIVE

The objective of this evaluation was to develop a general benchmark
for comparing the 8086 and Z8001 16-bit microprocessors. Since military
applications include a large variety of microprocessor tasks, the benchmark
had to provide a general assessment of each microprocessor's capabilities
and a means of comparing them. It also had to be independent of programming/
programmer bias and experience level.

SUMMARY

The microprocessors were benchmarked using five tasks and two mixes of
instructions. In addition, the vendor support of the devices was examined.

The five tasks chosen were moving a block of data, adding and
multiplying data arrays, sorting a data array, and servicing interrupts. The
two mixes chosen were an arithmetic mix and a CRT terminal controller mix.

The results of the benchmarks are summarized in Table 3-1, with the
performance of the Z8001 normalized to that of the 8086. The task bench-
marks used the data calculated from operations on a 256 word array. A 5%
deviation from calculated execution times was used for the 8086, since
this is the minimum deviation to be expected, as detailed in the vendor's
literature.

The benchmark results revealed that the Z8001 was significantly more
efficient and significantly faster than the 8086 in six of the seven tests.
The remaining test was inconclusive although the instruction prefetch
mechanism of the 8086 could change this. The vendor of the 8086 states that
actual execution times can be expected to be 5% to 10% slower than calculated
execution times and this would increase the speed advantage of the Z8001.

Both devices were found to be well supported by vendor supplied

development systems supporting high level language programming.

The Z8001 was found to be a better choice than the 8086 by these
comparisons.

MICROPROCESSOR DESCRIPTION

The 8086 is an HMOS (high performance n channel) device which operates,
in the military version, at a clock rate of 5 MHz. This device uses a
dedicated register architecture and can address 1 megabyte of data memory.

III-I

TABLE 3-1 Z8001/8086 BENCHMARK PERFORMANCE SUMMARY

Z8001 Z8001 Z8001

Task Execution Time Machine Cycles Bytes of Code

Move a block of data 64% 53% 91%

Add data arrays 83% 69% 89%

Multiply data arrays 61% 51% 71%

Sort a data array

best case order 13% 81% 81%
worst case order 20% 17% 81%

Service interrupt 88% 97%

Arithmetic mix 94% 77%

CRT terminal controller 108% 86%

1) Baseline is 8086 calculated performance, plus 5% per the vendor's

literature.

2) 256 element arrays are assumed.

The Z8001 is an NMOS device which can operate at a clock rate of 4MHz
and address 8 megabytes of data memory. It can utilize a Memory Management
Unit to limit memory access, modify logical addresses to virtual addresses,
and perform other memory management tasks.

Both devices support arithmetic operations on Binary Coded Decimal data,
while the 8086 also supports ASCII arithmetic manipulations. Both devices
have control lines used for multiprocessor applications.

BENCHMARKING OVERVIEW

The primary advantage of task benchmarking is that it illustrates the
specific instructions available to the processor under test. flowever,the
results obtained using this method can be misleading, since the selection of
the task and programmer bias (in terms of preference, experience, and skill)
can affect the results.

Mix benchmarking removes the human factor from the programming by the
extraction of instruction types from a specific application. However, it can
be limiting in that it uses only those instructions common to most
microprocessors. The mix benchmark, therefore, does not compare the total
instruction sets available to the microprocessors.

111-2

-I.

The general benchmark used both methods. Task benchmarks were used to
compare the specific instructions available to each microprocessor, while
the mix benchmarks compared the processors' common instructions. This
combination of benchmarking methods yields an accurate measure of
microprocessor performance.

All benchmarks assumed an ideal system with no delays caused by the
operator, slow memory, or other causes.

Task Benchmarks

The tasks selected for the general benchmark are similar to many
published benchmarks. These tasks were expanded to include referencing of
the large memory addressable by the microprocessors, but are otherwise

standard. The tasks included moving a block of data, addition and
multiplication of data arrays, sorting of a data array, and servicing
interrupts.

Coding of the tasks and derivation of the results can be found in
Appendices A and B. Since the time required for execution of some of the
tasks is dependent cn the number of elements processed, the results are
representative operating times calculated for these tasks using 256
element arrays. It was assumed that eight registers had to be saved and
restored for servicing interrupts.

Mix Benchmarks

Two mixes representing contrasting tasks were chosen for the benchmark.
The first mix was an arithmetic mix. This mix was derived from a military
fire control simulation mix which was modified slightly to enable the testing
of microprocessors rather than minicomputers. The mix modifications are

described in detail in Appendix C. Floating point operations were deleted
because they do not exist as a hardware feature on either processor. The
detailed derivation of the results of this mix is presented in Appendices
D and E.

A CRT terminal controller mix was developed to complement the arithmetic
mix. A detailed description of the mix derivation is presented in
Appendix F. An overview of the model system and overall task is presented
here for convenience. Refer to Figure 3-1 for the system block diagram.

For the terminal mix, it was assumed that the microprocessor is totally
dedicated to the modification and management of the system and video buffer
memories. The system is interrupt driven with keyboard and video interrupts
allowed. While the system memory is accessible at all times, the video

buffer can be accessed only during vertical sync periods as determined by

the video timer and controller and the control circuits.

111-3

~~0

i

a

-4

'-4

111-4

The program developed was assumed to reside in system ROM thus limiting
the addressing modes used. It was assumed that the processor was
functioning in a "wait" loop prior to any interrupt and only those steps
necessary for execution of the basic task were included in the definition.
No "wait" states were required for memory access and all subroutines could
be completed in one vertical sync period.

While the processor's time would not, in any reasonable application,
be wasted on looping until interrupted as it is here, the system and
programming were developed specifically to test data handling efficiency.
This does not prohibit the execution of other tasks during the processor's
"off" time, but comparing the processors is much clearer, and more
meaningful, if added tasks are absent. The human interface was considered
to be perfect for the task in the sense that it was not allowed to detract
from the measurement of processor performance.

RESULTS

Benchmarking

The 8086 and Z8001 were compared using both task and instruction mix
benchmarking methods.

Task benchmarking compared the lines of code and time required for
the processors to execute specific tasks. This method allowed comparison
of instructions not common to both microprocessors.

The five tasks chosen were moving a block of data, adding and
multiplying data arrays, sorting a data array, and servicing interrupts.
These tasks are similar to those used in many published microprocessor
benchmarks, except for the modifications necessary to utilize the large
memory space available to the processors.

The results of the task benchmark are summarized in Table 3-2 through
3-4, while the coding and derivation of these results can be found in
Appendices A and B. For the purposes of comparison, representative
execution times were calculated using the derived equations and assuming

256 element arrays.

Two mixes of instructions, derived from statistical analyses of
instruction usage in specific microprocessor applications, were used to
compare instructions common to both processors.

An arithmetic mix, derived from a military fire control simulation
nix, was used to evaluate the arithmetic efficiency of the processors. The
modifications to the military mix involved the deletion of floating point
and transcendental functions, which are not hardware supported by either
processor. The derivation of the mix can be found in Appendix C. A
summary of the results for the arithmetic mix can be found in Table 3-5.
The derivation of the results is included in Appendices D and E.

111-5

TABLE 3-2 %kSK BENCHMARK RESULTS

Z8001 8086

Task Bytes Cycles Bytes Cycles

1. Move a block of
16 bit words 20 40 + 9n 22 35 + 17n

2. Add two arrays of
16 bit words, 16
bit result 40 47 + 54n 45 36 + 78n

3. Multiply two arrays
of 16 bit words, 32
bit result 36 40 + 117n 51 36 + 230n

4. Sort an array of
16 bit words

a) best case order 46 9n2 + 72n + 32 57 84n 2-13n+41

b) worst case order 46 9n2 + 72n + 32+

(12(1+2+3... (n-1))) 57 91n 2-20n+41

5. Service interrupt 306 421

TABLE 3-3 Z8001 TASK EXECUTION TIMES

Task * Cycles Time

1. Block move 2,344 .59 ms

2. Array addition 13,871 3.5 ms

3. Array multiplication 29,992 7.5 ms

4. Array sort

a) best case order 608,288 152 ms

b) worst case order 999,968 250 ms

5. Service interrupt 306 .08 ms

* Calculations for tasks I through 4 a based on 256 element arrays.

111-6

€I

TABLE 3-4 8086 TASK EXECUTION TIMES

Calculated Expected Run
Task * Cycles Time Time (+ 5%)

1. Block move 4387 .88 msec .92 msec

2. Array addition 20,004 4.0 msec 4.2 msec

3. Array multiplication 58,916 11.8 msec 12.3 msec

4. Array sort

a) best case order 5,501,737 1100 msec 1155 msec

b) worst case order 5,958,697 1192 msec 1251 msec

5. Service interrupt 421 .08 msec .09 msec

* Calculations for tasks 1 through 4 are based on 256 element arrays.

TABLE 3-5 ARITHMETIC MIX (RESULT SUMMARY)

Z8001 (4MHz) 8086 (5MHz)

Calculated Expected (+5)

Group 1 Data Movement 16.2 msec 17.4 msec 18.3 msec

Group 2 Arithmetic 2.5 msec 3.3 msec 3.4 msec

Group 3 Shift/Rotate .80 msec .58 msec .61 msec

Group 4 Compare .22 msec 0.28 msec .29 msec

Group 5 Branch Instructions 5.1 msec 5.4 msec 5.6 msec

Group 6 Index Register 2.6 msec 1.2 msec 1.3 msec
Operation

Group 7 Logical Operations .55 msec .66 msec .69 msec

Group 8 Input/Output .22 msec .14 msec .15 msec

Total Time Required 28.2 msec 29.0 msec 30.0 msec

111-7

i

A CRT terminal controller mix compared the data handling capabilities
of the processors. A detailed description of the derivation of the mix

is included in Appendix F. The results of this benchmark are summarized
in Tables 3-6 and 3-7. The symbols used in these tables are defined as
follows:

N/A: Not Applicable

IM: Immediate

IR: Indirect Register

DA: Direct Address

Architectural and Software Considerations

In order to allow the easy translation of the earlier 8080 family
software, the 8086 features a dedicated register architecture. While this

system of register use is familiar to many, the regular register
architecture of the Z8001 is much easier to learn and much fLster to
use in assembly language programming.

The Z8001 can directly support 8 megabytes of memory, 7 megabytes

more than the 8086, and allows for direct conditional branching anywhere
within the memory space. This address space is easily expandable to 48

megabytes by decoding the Z8001's status lines.

The 8086, while supplying unlimited range by the use of an
unconditional jump command, is limited to +128, -127 bytes directly in
conditional branching and loop instructions.

Due to the prefetched instruction queue, the penalty for taking a
conditional branch is very high in the 8086. Instruction execution times
are at least three, and sometimes four, times the basic instruction times.
The use of the statistical determination that most conditional branches Are

less than +/- 127 bytes away aids in reducing the number of 8086 code lines.
The Z8001, even though using two lines of code per branch instruction, is

much faster in execution.

The ability to easily transform 8080 family code to 8086 code costs
a great deal in performance. The decision to break with past processor

architectures allows the Z8001 to be more efficient and more versatile than
the 8086. While the loss of 8080 family software compatibility would be

a small price to pay for the increase in performance, this loss is more

apparent than real since the Z8001 is well supported by its software

development system.

Product Maturity and Future

The 8086 is available in an evaluation board and a single board

computer, as well as a separate IC.

111-8

The processor is supported by a development system which can support

in circuit emulation. The development system will support Basic and
Fortran, the proprietary PL/M, and the macro assemblers for the 8080 family
as well as the 8086.

The 8089 Input/Output Processor and 8087 Arithmetic Coprocessor, which
improve the performance of the 8086, are currently available.

While a second source agreement has been made, no devices are expected

from the second source in the near future.

The Z8001 is also available as a single IC or in a single board
computer or an evaluation board.

The development system supporting both the Z8001 and Z8002 offers
optional in circuit emulation. The development system will support Fortran,
Basic, Cobol, Pascal, the proprietary PL/Z, and the macro assemblers
for the 8080 as well as Z80 families. Further software support is

offered by a translation routine which will translate Z80, 8080, or 8085

source code into Z8000 source code.

Coprocessor development in support of the Z8000 family has been
announced, but no details of function or availability have been released.
The processors now being produced will, however, allow for the use

of these coprocessors when they become available.

An active second source is currently producing the Z8000 family as
well as marketing a development system.

111-9

TABLE 3-6 8086 CFr TERMINAL CONTROLLER MIX BENCHMARK RESULTS

Address Machine Number Total

Command Mode Cycles Used Cycles

1. Clear Register (Word) 1/ N/A 4 742 2,968
(AND)

2. Clear Register (Byte) 1/ N/A 4 750 3,000
(AND)

3. Set/Load Byte IM 4 679 2,716
4. Set/Load Word IM 4 144 576
5. Move Byte, Register to N/A 2 167 334

Register

6. Move Word, Register to N/A 2 1,157 2,314
Register

7. Move Byte, Memory to Register IR 14 107,520 1,505,280
8. Move Byte, Register to Memory IR 15 119,040 1,785,600
9. Move Byte, Register to Memory DA 12 11,999 143,988

(1/o) 3/
10. Read Word, Memory to Register DA 10 12,384 148,608

(I/o)
ii. Clear Memory (I/0) 2/ DA 11 12,384 136,224
12. Move # to Memory, Byte, DA 12 148 1,776

(I/0) 3/
13. Move # to Memory, Byte DA 16 34,753 556,048
14. Move # to Memory, Byte IR 15 1,233 18,495
15. Increment Register N/A 2 203,744 203,742
16. Increment Byte Register N/A 2 24,445 48,890
17. Decrement Register N/A 2 1,575 3,150
18. ADD Register IM 4 20 80
19. Logical AND to Register IM 4 25 100
20. Subtract from Register IM 4 4 16
21. Logical or to Register IM 4 7 21
22. Clear/Set Bit I/O 4/ DA 12 45,537 546,444
23. Conditional Jump Taken N/A 16 25,382 406,112
24. Conditional Jump Not Taken N/A 4 153,280 613,120
25. Unconditional Jump N/A 15 98,344 1,475,160

Total Cycles - 7,604,762

Total Calculated Time = 1.52 seconds

Expected "Execution" Time (+5%) 1.60 seconds

III-t0

NOTES:

(1) No CLEAR instruction exists for the 8086 microprocessor. CLEAR is

implemented by an immediate AND with 0, word or byte as required.

(2) Clearing an I/0 port is implemented by ANDing the accumulator with
0 and outputting the result to the required port. Thus 8 + 3 = 11
required cycles (AND AL, #0; OUT DX, AX).

(3) Movement of data to an output port requires an accumulator load

followed by outputting the requested data, thus 8 + 4 = 12 cycles
minimum (MOV B AX, #B; OUT DX, AX).

(4) Setting and clearing of output port bits is accomplished by setting
or clearing the appropriate accumulator bits by an immediate MOV

instruction, then outputting the results. Thus, 8 + 4 = 12 cycles

are required (MOV AX, #set; OUT DX, AX).

Ill-li

TABLE 3-7 Z8001 CRT TERMINAL CONTROLLER MIX BENCHMARK RESULTS

Address Machine Number Total
Command Mode Cycles Used Cycles

1. Clear Register, Word (CLR) N/A 7 742 5,194
2. Clear Register, Byte (CLRB) N/A 7 750 5,250
3. Set/Load Register, Byte (LDB) IM 7 679 4,753
4. Set/Load Register, Word (LD) IM 7 144 1,008
5. Move Byte, Register to N/A 3 167 501

Register (LDB)
6. Move Word, Register to N/A 3 1,157 3,471

Register (LD)
7. Move Byte, Memory to IR 7 107,520 752,640

Register (LDB)
8. Move Byte, Register to IR 8 119,040 952,320

Memory (LDB)
9. Move Byte, Register to DA 12 11,999 143,988

Memory, I/O (OUT B)
10. Read Memory to Register, DA 12 12,384 148,608

Word I/O
11. Clear Memory, Word 0 Out to DA 12 12,384 148,608

I/O Port (Out)
12. Move # to Memory, Byte DA 12 148 1,776

I/0 (OUT B)
13. Move #, to Memory, Byte (LDB) DA 14 34,753 486,542
14. Move #, to Memory, Byte IR 11 1,233 13,563
15. Increment Register, Word N/A 4 203,744 814,976
16. Increment Register, Byte N/A 4 24,445 97,780
17. Decrement Register, Word N/A 4 1,575 6,300
18. Add Register, Byte (ADDB) IM 7 20 140
19. And Register, Byte (ANDB) IM 7 25 175
20. Subtract Byte (SUBB) IM 7 4 21
21. Logical OR Register, Byte IM 4 7 21

(ORB)
22. Set/Clear Bit (SET B) DA 16 47,537 760,592
23. Conditional Jump, Taken (JP) DA 8 25,382 203,056
24. Conditional Jump, Not DA 8 153,280 1,266,240

Taken (JP)
25. Unconditional Jump (JP) DA 8 98,344 786,752

Total Cycles Required = 6,564,275

Total Time Required (4MHz) = 1.64 msec

111-12

SECTION IV

CHARACTERIZATION OF THE Z8001 MICROPROCESSOR

OBJECTIVE

The purpose of this effort was to perform a characterization of the
Z8001 microprocessor. The following tasks were included in this effort:

1. Develop a short test pattern which would exercise a large
percentage of the circuitry in the Z8001.

2. Develop a test program compatible with the Tektronix 3270 at
RADC. This program would use a GO/NOGO functional test with
worst case timing parameters.

3. Test commercial and military parts (if available) to determine

device operating regions. Test results would provide an
indication of the compliance of the device to vendor specified
limits and whether the device will operate in the military
temperature and voltage ranges.

SUMMARY

The characterization of the Z8001 determined device sensitivity
to various combinations of VCC, clock frequency, clock duty cycle, and
logic level inputs over the -55 to +125 0 C temperature range. Test
patterns were generated using a simple EPROM based Z8001 system developed
for that purpose. A machine level program was written and transferred
into the EPROM, a logic analyzer was connected, and the test vectors
were recorded as the system ran. A test adapter and 3270 GO/NOGO
functional test program were developed for taking and storing data. All
of the programs that were developed are included in Appendix C.

Data was taken on seven commercial and two military parts. Devices
were obtained from both manufacturers of the Z8001.

None of the devices passed at the vendor specified limits over the
commercial voltage and temperature ranges. Vendor L's devices required
that VII, = 2.2 V and Vendor A's devices required that VIH =2.3 V for 100%
of the devices to pass. Vendor L's devices would operate only up to
3.5 MHz at 700 C with the minimum specified clock low time. Vendor L is
aware of this duty cycle/temperature problem and is taking corrective
action. Vendor A's devices did operate up to 4 MHz at 700C but exhibited

this problem at 1250 C.

IV-i

None of Vendor L's devices would operate over the entire military

temperature and voltages ranges. At 125 0 C they all failed at VCC = 4.5 V.
Performance improved at 4.75 V but not all devices passed. The problem
does not appear to be input level sensitive. Vendor L had not
experienced this problem and offered to retest the devices. This may
be done at a future date.

Two of Vendor A's devices passed over the military temperature and
voltage ranges for some combinations of drive levels and frequencies.

Vl11 had to be 2.4 V or greater for any of the devices that did operate
in this range. The maximum frequency they would work at over the entire
range was 3.5 MHz. As previously mentined they also exhibited the duty

cycle/temperature problem at 125 0 C. Only one device passed at 125 0C
with VCC = 4.5 V even with VIL = 0.0 V. At VCC = 4.75 V all devices passed
if VIL was less than 0.6 V indicating that the device was sensitive to
input low drive levels.

As a result of this effort, test patterns and programs are in place
on a Tektronics 3270 and are available to perform additional testin' or

more extensive characterization.

DISCUSSION

The Z-8001, introduced in 1979, is a radical departure from the
dedicated register architecture of the earlier eight bit machines.
The use of a sophisticated architecture featuring sixteen bit, non-

dedicated registers, plus a set of parallel stack registers, greatly

increases the difficulty in developing an effective test.

Vector Development

Part of the characterization effort consisted of the development
of a short pattern that could be used to test the Z8001. Since a large

portion of the circuitry in a microprocessor can be tested by the fetching

and execution of a small number of instructions, the use of a short pattern

provides a good indication of device performance while minimizing the
number of pattern loads required during the test. The following methods

of vector development were investigated:

I. Manual generation of the test vectors.

2. The hardware emulation approach to vector generation which

includes the use of the 3270 to record the test vectors.

3. The manual extraction of the test vectors from an operating

Z8001 system.

IV-2

The first choice was ruled out because information was not available
in the vendors' literature to indicate on what clock cycles instructions
and data had to be available to the processor. The second was ruled out
due to the risk and cost involved in using a Z8001 board which had just
come on the market. The third method which uses a logic analyzer to
extract the test vectors from an operating system was chosen.

Vector Generation

The system shown in Figure 4-1 was designed and built. A machine
language program was written and programmed into the EPROMs. After the
program was debugged, a logic analyzer was connected and the vectors were
extracted and recorded for later transcription to the 3270.

Vector Description

The pattern developed contains 512 vectors. The following functions
of the Z8001 were tested:

1. Reset

2. Moving data into and out of all user accessible registers,
including the refresh, NPSAP, and normal stack pointers, at
least once.

3. Multiple "automatic" register loads to and from memory.

4. Conditional and unconditional jumps.

5. The clearing of word and long word registers.

6. Add and multiply.

7. Test word and long word registers.

8. Output word operands

9. Halt

These functions used intersegment data and code fetches and five of the
eight addressing modes.

IV-3 I

00

u F4

'.00

IV-

3270 Test Description

The ZSO0 test utilized a GO/NOGO functional test in which PASS/FAIL
information was recorded as the temperature, logic input levels, power
supply voltage, operating frequency, and clock duty cycle were varied over
the following ranges:

1. Temperature
-55, 0, 25, 70, 125 0C

2. Logic Input Levels
VIL held at 0.0 V, VIH varied from 2.0 V to 2.5 V in 0.1 V steps.
VIII held at 3.5 V, VIL varied from 0.4 V to 0.8 V in 0.1 V steps.

3. Power Supply Voltage
4.25 V to 5.75 V in 0.25 V steps

4. Operating Frequency
250 KHz and 500 KHz to 6 MHz in 500 KHz steps

5. Clock Duty Cycle
20% to 80% in 10% steps

Duty cycle was used as a variable parameter during the test to make
testing more convenient. The clock parameters are not specified as a
function of duty cycle as they are for some processors. A minimum clock
high and low time are specified for the Z8001. At 4 MHz, these equate to
a 50% duty cycle. By varying the duty cycle it is possible to vary the
clock high and low times.

During the test, the clock input high and low voltages were maintained
at the vendor specified limits of VCC-0.4 V and 0.45 V, respectively.
The output comparison levels were 2.4 V and 0.4 V which are the vendor
specified limits for VOH and VOL, respectively.

The test pattern was run in five passes to ensure that output timing
was checked at the manufacturer specified delays. The first pass checked
S and DS read, the second checked DS write, the third checked DS I/0, the
fourth checked MREQ, and the fifth checked the address/data bus (ADO to
AD 15).

Figure 4-2 shows a high level flow chart of the test program.

The load circuit shown in Figure 4-3 was connected to the device output
pins. It provides 100% capacitive loading (including 3270 capacitance),
70% resistive loading for VOL and 80% resistive loading for VCH. With the
load connected the high impedance voltage floats to a value between 1.0 V and
2.0 V. This allows checking of the high impedance state during functional
test.

IV-5

START Iii
YES

MORE

INPUT OUT PUTS? -- 3

TEMPERATURE GLGDT

MORE

SELECT POEE FREQUENCIES?

Y1:s

SELECT MORE S ?

YES

SELECT MORE E

DUE LE C'AT ' FR<RIU
: 0

L A '

ME YES

RUN TEST GO?
PATTERN ON ~ -BTEMPERATURES)

>'

SELECTED OUTPUTS!I

A C.TD(
~~I~d2RE L-? ~Z800l b~FC~R" O~ KR

iv- 6

PIN

r56pF) 12K --
NOTE: ALL F;'ISTCP, - P! CS

C7iACI TOR - CKO5

FIGURE 4-3 Z8001 LOAD CIRCUIT

DATA ANALYSIS

Five parts from Vendor L and four from Vendor A were tested. All parts

received for characterization were serialized as indicated in Table 4-1.

TABLE 4-1 DEVICE SERIAL NUMBERS

Device Mark Date
Number Vendor Step Type Code

J

I L V Commercial 8043

2 L V Commercial 8043
3 L V Commercial 8104
4 L V Commercial 8104
5 L V Commercial 8104

6 A W Military 8051
7 A W Military 8051

8 A W Commercial 8052

9 A W Commercial 8052

Vendor L was able to provide V step devices. The V mask step represents
the latest and first fully functional version of the Z8001 and is the version
that will be qualified. The W mask step parts from Vendor A are one revision
earlier. They have a few functions that do not operate properly. However,

these were not included in the test pattern that was developed so that any

failures that occurred could not be attributed to them.

IV-7

Vendor L could not supply military grade devices because they were
just updating their test program to permit testing over the military
temperature range. The two military grade parts from Vendor A were received
as samples since they were not yet marketing their military devices.

The same chip is used for the commercial and military grade devices.
Since the only distinction between the two grades is the temperature and

power supply ranges over which the parts will operate, all devices were
tested over the full commercial and military ranges.

Since a large amount of data was taken and analyzed it is not possible
to include all of the shmoo plots that were generated in this report.
Figures 4-4 through 4-7 summarize device operation over the commercial
range and Figures 4-8 through 4-9 summarize operation over the military
range. A 50% duty cycle was used to guarantee the minimum clock high and
low times at 4 MHz. Figures 4-4, 4-6, and 4-8 show the number of devices
that passed as frequency and VIH were varied. For these figures, VIL=0.O V.
Figures 4-5, 4-7, and 4-9 show the number of devices that passed as
frequency and VIL were varied. For these figures, VIH = 3.5 V. The solid
lines on these plots indicate the specified operating regions.

From Figures 4-4 and 4-5 it can be seen that Vendor L's parts did not
operate over the specified commercial range. Examining the results up to
3.5 MHz it can be seen that VIH had to be raised to 2.1 V for 80% of the
devices to pass and 2.2 V for 100% to pass. Operation with VIL = 0.8 V was
not a problem. The failures at 4 MHz were duty cycle/temperature, and not
drive level, related. This will be explained in more detail later.

Figures 4-6 and 4-7 show the peiformance of Vendor A's parts over the

commercial operating range. From these figures it can be seen that VIL was
not a problem and that the devices would operate at 4 MHz. Vendor A's
devices did not exhibit the duty cycle/temperature problem at 700 C.
It can also be seen that VIH had to be raised to 2.3 V for 100% of the

devices to pass.

Figures 4-8 and 4-9 show the performance of Vendor A's parts over the
military operating range. From these figures it can be seen that two of
the four devices tested passed for some combination of drive levels and
frequency. It should be noted that of the two devices that passed, one was
commercial and one was military. The other military part (7) did not
operate over the entire voltage range at 125 0 C. It can be seen from the
figures that VIH had to be 2.4 V or greater for any of the devices to
operate and even then the maximum frequency was limited to 3.5 MHz. Operation
at higher frequencies was again related to the duty cycle/temperature
problem.

No summary plots are included for Vendor L's devices for the military
operating region since none of them operated over the entire voltage and
temperature ranges. The problems that were encountered are explained below.

IV-8

CD~~ 4D d c

LA

S LIn
*- rv %

>n

* Q i

b.

LA In M

A 4Vin 4n O

* a w

iv- 9

ULa

_c >* U

f) *0
GO~

Lij ILI

0 u

P-

40

L".

czj

0.
1.0~~~O La .0101.

>0

LAN 1.0 U)))

0>

0V1

64)~

w Or
co~-6 ur c,
0 4

CP C4 0-A[4>

qr <

VQQ

CYC

ow

C

- z

00

IV-11

Lro

U) 0 r

E CA

*.-d Li ~ (

') *

CV) C., C,

~b.
LA,

z

> 4)

Lh

u z
qr mr w LA

LA.

9. *

0G

IV- 12-

it n

-4

*D 0D4 ID4

4D CID D 4D 4

OD CIDab 4Dcc n.

LY

4J 00

C 11

44-

IV- 13

Lfl

Lfl

0

I)

co cocoCDCD4

n -

C C

2a

0

I&A

C%j C%J C n>

C

>
,6

I I IIV 14>

Additional shmoo plots are included to illustrate some of the results
obtained. Most of the plots are for Vendor L's devices. Vendor A's devices
operated in a similar manner. Where significant differences in performance
occurred, plots are included for Vendor A's devices also.

Figure 4-10 shows the relationship between Vill andVCC at -55 0 C, 4 MHz,
and 50", duty cycle. It can be seen that as VCC increases, VIll has to
increase for the device to pass. This is to be expected since the threshold
for NMOS devices is highest at low temperatures and high values of VCC. It
should be noted that ViH has to be at least 2.3 V for 80% of the devices
to pass and 2.4 V for all devices to pass. Vendor A's devices performed
in a similar manner and also required 2.4 V for all devices to pass.

Figure 4-11 shows the relationship, for Vendor L's devices, between

VIL and VCC at 1250 C, 4 MHz, and 50% duty cycle. Since low VCC and high
temperature are the worst case conditions for VIL one might assume that the
failures at 4.5 and 4.75 volts could be eliminated if VIL were less than
0.4 V. However, Figure 4-12 show: that the devices failed even when VIL was
0.0 V. Vendor L was contacted to. deterT-aine whetier they had ever experi .riced
this problem. They said that they had not and they did not know what might
cause it. They di4i ofcr to retest the devices to see ii they obtained
similar results. This option may be exercised at a future date. Figure 4-13

is the same as Figure 4-11 except that it is for Vendor A's devices. It can
be seen that only one of Vendor A's devices passed for all VIL values at
4.5 V and 125 0 C. This would indicate that the problem was not threshold
related since the failing devices did not pass even when VIL=0.O V.
However, at VCC=4.75 V, all devices passed when VIL was less than
0.6 V. This does indicates that a threshold problem might exist at high
temperature and low VCC. Additional investigation in this area is
recommended.

Figure 4-14 is a plot of frequency versus temperature at 50% duty
cycle, VCC = 5.0 V, Vil =- 3.5 V, and VIL = 0.8 V. This plot is for
nominal VCC so that the VI}i and V1 1 values used would not be affected
by the variation in temperature. In examining the figure, one can see
that the maximum frequency at which the device operates decreases with
increasing temperature. .Normially this is expected since NMOS slows down
with increasing temperature. However, in this case the device operates
only up to 3 MHz even though it is specified to operate at 4 MHz.

Figure 4-15 is the same as Figure 4-14 except that the duty cycle was
reduced to 40%. In this plot a definite improvement in performance is seen
at higher temperatures. All devices now operate at 4 MHz, at 70 and 1251C.
However, low temperature performance is now sacrificed.

Figures 4-16 and 4-17 are plots of duty cycle versus frequency at
-55 and 125 0 C, respectively. VC(and the input drive levels are the same
as in Figures 4-14 and 4-15. In comparing Figures 4-16 and 4-17, it can be
seen that device performance is significantly degraded for the higher duty
cycles at 125 0 C. The area to the left of the solid lines indicates

IV-15

Z8061 CHARACTERIZATION

COUNT OF PASSING SNS (5 TOTAL)

! I I

2.5 5 5 5 5 S

2.4 5 S S 5 5 4

2.3 5 S S 5 4

DRIVE LEVEL

2.2- 5 S • -

(VOLTS) 1

4.25 4.5 4.7S . 5.25 5.5..

VCC (VOLTS)

VIL = O.OV
Frequency = 4 MHz

Duty Cycle 50%

1. VIH has to increase with increasing VCC for the devices to

operate at -55"C. These are worst case conditions for VIH.

2. Vendor A's devices performed in a similar manner.

FIGURE 4-10 VIH VS. VCC AT -55 0 C FOR VENDOR L DEVICES

iv-16

Z8e0 CHARACTERIZATION

COUNT OF PASSING NS (S TOTAL)
I I I I I I

.8 * 8 5 5 5S

.7 * 2 5 5 4

DRIVE LEVEL

.6 * a S S 4

(VOLTS)

• S. • 2 5 5 5 4

.4 2 S 5 S 4

4.25 4.5 4.75 5.e 5.25 5.5 5.75

VCC (VOLTS)

VIII = 3. 5 V
Frequency = 4 MHz
Duty Cycle 50%

1. Device performance deteriorated if VCC was less than 5V. Low
VCC and high temperature are worst case conditions for VIL.
Problem does not appear to be threshold related however becatise
devices did not pass even when V[g was O.OV. (See Figure 4-12).

FIGURE 4-11 VIL VS. VCC AT 125 0C FOR VENDOR L DEVICES

IV-17

ZS01 CHARACTERIZATION

COUNT OF PASSING SNS (S TOTAL)

I I I I I ,

2.S . S S S 4

a.4 S S 5 4

S.3. 1 S S S 4
DRIVE LEVEL

2.a . 1 S 5 S 4

(UOLTS)

2.6 1 S S 5 4

4.25 4.S 4.75 5.0 5.25 5.5 5.?7

VCC (VOLTS)

VIL = 0.O
Frequency = 4 MHz
Duty Cycle * 40%

1. None of Vendor L's devices passed at VCC - 4.5V indicating that

VIL threshold was not the cause. At 4.75V two devices passed if
VIH was greater than 2.4V. Vendor L could not explain reason for
this trend. Low VCC and high temperature are best case conditions
for VIH.

2. One of Vendor A's devices passed at all VIj drive levels for VCC

4.5V and all four passed at VCC = 4.75V.

FIGURE 4-12 V1i VS. VCC AT 125 0 C FOR VENDOR 1 DEVICES

Iv-18

.O, 0CHARAETRIZATION

COUN T OF PASSING SNS (4 TOTAL)

_ L . I I i i I

.8 1 3 4 4 4 4

.7 1 3 4 4 4 4

DRIVE LEVEL

.6 1 3 4 4 4 4

(VOLTS)

.4 1 4 4 4 4 4

4.25 4.3 4.75 5.0 S.E S.5 5.7

VCC (VOLTS)

VIH - 3.5 V
irequencv 4 MHz
Duty Cycle =50%

1. Only one device passed when VCC 4.5V. This was also true

when VIL was O.OV and VIH was varied.

2. At VCC = 4.75, all devices passed when VIL was less than 0.6V
indicating a threshold -,zoblem might exist.

FIGURE 4-13 VIL VS. VCC AT 125°C FOR VENDOR A DEVICES,

IV-19

Z8001 CHARAC'EPIZATION

COUNT OF PASSING SNS (S TOTAL)

I I I

5.; 3 . .4
S. 3 . .

4 54

4.5 5 5 5 • -

S 5 5 4

3.5 55 5 5

FREOUENCY 5 55 5 5
(MHz) S. _ S5 S 5

5 S 5 S 5

L.5 5 S5 5 5
.Z 5 5 5 5 5

-55 0 25 70 125

TEMPERATURE

(DEGREES C)

VIL = 0.8V
VIl = 3.5V
VCC = 5.OV

Duty Cycle = 50%

I. Nominal VC was used to minimize threshold effects.

2. Maximum operating frenuency decreases with increased temperature.

Vendor L's devices operate up to 3 MHz.

3. Vendor A's devices also dropped out at 3 MHz at 125*C but passed

up to 4 MHz at 70 0 C.

FIGURE 4-14 FREQUENCY VS. TEMPERATURE AT 50% DUTY CYCLE FOR VENDOR

1. DEVICES

IV-20

Z8001 CHARACTERIZATION

COUNT OF PASSING SNS (S TOTAL)

I I I

S.S 5.5 4 .o4 4 4+

4 4 4 1 .

4.S . • 1 4

4 S 5 S S

3.S 5 S 5 S S

FREOUENCY 5 5 S 5 S

(MHZ) .S S S S S S

S 5 S 5 S
1.S -S S S S S

S . S S

.S S 5 S S S

-SS 0 2s 70 12s

TEMPERATURE

(DEGREES C)

VIL = 0.8V
VIH = 3.5V
VCC = 5.0
Duty Cycle = 40%

1. Nominal VCC was used to minimize threshold effects.

2. At 40% duty cycle, all of Vendor L's devices passed to 4 MHz at

high temperatures but one device dropped out at -55*C. A longer

clock low time is required at high temperatures but it deteriorates

low temperature performance.

3. Vendor A's devices also performed better at 40% duty cycle and 125*C
with all four passing up to 4 MHz.

FIGURE 4-15 FREQUENCY VS. TEMPERATURE AT 40% DUTY CYCLE FOR VENDOR L
DEV ICES

IV-21 I

Z8001 CHARACTERIZATION

COUNT OF PASSING SMS (S TOTAL)
I I i I

8e 5 S 5' S 5 . ..

70X 5 5 5 5 L.5 S; 5 1 . .

e S S S S $ S 5 S 2 1

DUTYCYLSo% 5 S S S S S S 5. 5 4

CYCLE
40X 5 5 S 5 5 r.5. 5 4 .

30% 5 5 SJ 5 3 •

5 5-

.S 1.5 2.5 3.5 4.5 5.S

FREQUENCY (MHZ)

VIL = 0.8V

VIH = 3.5V

Vcc = 5.ov
Temp = -55°C

1. Nominal VCC was used to minimize threshold effects.

2. All of Vendor L's devices passed within the specified range.

3. All of Vendor A's devices passed within the specified region also.

4. At low temperature, both vendors' devices operated better with
shorter clock low times (higher duty cycles).

FICURE 4-16 DUTY CYCLE VS. FREQUENCY AT -550C FOR VENDOR L DEVICES

IV-22

Z3001 CHARACTERIZArICh

COUNT OF PASSING SNS (5 TOTAL)

DUTY

CYCLE

.5 1.5 2.5 3.S 4.5 5.5

FREQUENCY (w1H)

VIL 0.8V
V~j 3.5V

VCC 5.OV

TEMP =12 5 C

1. Nominal V~C was used to minimize threshold effects.

2. At high temperatur e, Vendor L devices are sensitive to clock
low time and failures occur.

3. Vendor A's devices exhibited the same problem.

FIGURE 4-17 DUTY CYCLE VS. FREQUENCY. AT 1250C FOR VENDlOR L DEVICES

IV-23j

*the duty cycles for which the minimum clock high and low times are met
at each frequency. In Figure 4-15 it can be seen that all devices pass
within the specified range. However, at 125 0 C failures occurred at

1.5 MHz and above 3 MHz. As previously mentioned this problem limited

700C operation for Vendor L's parts to 3.5 MHz. Vendor A's parts exhibited
the same problem at 125 0 C but not at 700 C. Vendor L was questioned
about the problem and indicated that they were aware of it. The Z8001
is a dynamic device and the clock low time is used for charging of dynamic

nodes. At high temperatures parts fail when operated at the minimum
clock low time. The problem is instruction dependent and existed in
previous versions of the device. The product engineer did not have available
the list of instructions which were affected. He did indicate that the
problem was remedied somewhat with the last mask change. Vendor L is
planning a die shrink and indicated that the problem should be eliminated

with it.

A 6 MHz version of the Z8001 will also be qualified. Some of the devices

did pass at 5.5 MHz but not over the entire commercial or military ranges.
It should be noted that the parts tested were sold or sampled as 4 MHz
devices.

A minimum frequency of .5 MHz is specified for the device. The parts
were tested down to .25 MHz. It was found that if a device operated at

.5 MHz for a given set of conditions then it would also operate at .25 MHz
at these conditions.

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions were reached as a result of the

characterization:

1. Both vendors' parts exhibited similar performance characteristics

for any given set of conditions.

2. The devices are sensitive to the VIH level and this limit may

have to be relaxed. Vendor A's devices required a slightly
higher logic one level than Vendor L's over the commercial
range. Both vendors' devices required a logic one level of

at least 2.4 V over the military range.

3. Operation at 4 MHz is a problem at high temperature. This is
caused by the limit on clock low time. Operation at 6 MHz will
also be a problem since the clock low time is even less.

4. The .5 MHz minimum frequency limit is conservative.

5. Neither vendors' devices would operate well at 125 0 C when VCC was

less than 5 V. The data indicated that this was not a
VIL threshold problem for Vendor L's devices but that it might be for

Vendor A's.

IV-24

The same chip in used fuv the Z8002 microprocessor and the results of
this characterization should be indicative of its performance under the same

conditions.

Since the characterization software and hardware are in place,
additional data, using a larger sample size, should be taken to assess the
performance characteristics of other parameters. These include clock
thresholds and input/output timing. In addition, the low
voltage/high temperature problem should be investigated more thoroughly.

IV-25

! h

-- . .. - I n n I , -

SECTION V

TEST DEVELOPMENT FOR THE Z8000

OBJECTIVE

The purpose of this evaluation was to review the tests which Vendor L
submitted for inclusion in the slash sheet for the Z8000. The approach
used is defined in "The Procedure for LSI Functional Test Development".
It has been documented in the RADC report entitled "Electrical

Characterization of Single Chip Microprocessors and Other LSI Devices" and
will not be repeated here.

SUMIARY

Vendor L provided an assembly listing of the Z8000 functional test
patterns along with a definition of the timing that they use for them.

Vendor L performs a dynamic functional test on the Z8000. The timing
information was evaluated first since Vendor L indicated that the sequence
of vectors in the functional test pattern was subject to change. It was
found that not all switching speed parameters were tested during the
functional test. Vendor L was contacted and indicated that they were

modifying their test program. All parameters would be tested once this
revision was completed.

A list of tests required to check the Z8000 was developed and forwarded

to Vendor L to assist in the functional test evaluation. A FORTRAN program
was also developed to aid in the evaluation which will be completed on
another RADC contract.

CIRCUIT DESCRIPTION

The Z8000 CPU, shown in Figure 5-1, is available in four versions.
All are sixteen bit, fixed instruction microprocessors fabricated with a
high density n channel silicon gate process. They require a single +5 volt
power supply and an external clock. The Z8001 and Z8002 operate at a

maximum frequency of 4 MHz while the Z8001A and Z8002A operate at 6 MHz.

The segmented Z8001(A) can directly access 8 megabytes of memory and
the non-segmented Z8002(A) can access 64 kilobytes. By using the seven
segment lines of the Z8001(A), it is possible to divide the eight megabyte
address space into one hundred twenty-eight, 64 kilobyte segments. The
instruction sets are identical, but due to the larger memory space of the
Z8001(A), software compatibility is upward only from the Z8002(A) to the
Z8001(A).

V-I

Ma

Ice-

d z ag

0

000
Z g u

)

117 11 ______________t t
Lao

,;a a a N i ' s " 51

III'sd

V-2

The microprocessors feature two parallel memory spaces (system and

normal) each of which is subdivided into program code, stack, and data
spaces. In system mode, the processor can use the entire instruction set
while in normal mode it can use only a subset of the instruction set. The

I/O space is separate from the memory space and is 64K ports for both
devices.

Both microprocessors support multiprocessing with dedicated input and
output lines and specialized instructions. The Z8001(A) can be used with a
memory management unit which uses a dedicated interrupt input. In addition,
there are three interrupt inputs common to both the Z8001(A) and Z8002(A).

The Z8000 architecture features sixteen, 16-bit general purpose

registers of which only one has any restrictions on its use as an address
component. Eight of the registers can be subdivided to provide sixteen,
8-bit registers. Register concatenation, required for 32 and 64 bit
operations, is a predefined function which requires no special commands.

DISCUSSION OF THE FUNCTIONAL TEST EVALUATION PROGRAM

A FORTRAN program was developed to facilitate the evaluation of the
functional test vectors. This program creates a record of the register

contents on a vector by vector basis. Other records are created for the
op codes used, data input or output, and control line inputs and outputs.
This information is used to determine how well the criteria in the
Z8000 checklist, ' cd below, are met.

The progr ,,n aas been tested for all known op codes and conditions in
the vendor's 1i irature. A subroutine must be written to input the vectors
into the program. This is dependent on the format and media (tape, disk,

etc.) in which the vectors are supplied and will be completed when the
finalized vector sequence is received from Vendor L. Additional information
concerning the organization and use of the program will be included in the
report detailing the completed functional test evaluation.

DISCUSSION OF THE FUNCTIONAL TEST

Since the Z8000 is a very complex device, it was sectioned into
funct onal blocks for evaluation. A list of tests required to check each
section was developed. This checklist was sent to Vendor L to facilitate
the evaluation which will be completed on another RADC contract.

The following is the checklist that was sent to Vendor L.

V-3

Z8000 FUNCTIONAL TEST CHECKLIST

1) ALU and Control Circuits

A) General

1) Have all addressing modes of all op codes been tested?

2) Have all non implemented op codes been tested for proper
trapping?

3) Have all priviledged instructions been attempted under both
system and normal operating modes?

4) Have all "automatic" op codes been tested for correct

operation? This includes the verification of the function,
modification and verification of address and counter register
contents, and termination when the counter register is
zero or when the condition code is satisfied.

5) Have the contents of each register affected by the op code
under test been verified prior to further modifications?

B) Load and Exchange Instructions

1) Has the clear command been tested for byte and word memory
locations and registers and for odd and even addressed bytes
and registers?

2) Has the exchange command been tested for byte and word
operands, for odd and even addressed bytes and registers,
and by single bit changes?

3) Has the load command been tested for byte, word, and long
word operands and for bytes on odd and even boundaries?

What is the effect of addressing a long word load to an
odd numbered register "pair"?

4) Is LDA tested in both the segmented and non-segmented modes?
Is LDAR also tested? Has it been verified that the stored
address will function with the reserved bits in their
undefined state? What is the effect if an odd register
"pair" is selected?

5) Is LDK tested for both four and eight bit constants?

6) Is LDR tested for byte, word, and long word operands and
for operands on odd and even source and destination addresses?
What is the effect if a long word load is addressed to an
odd register "pair"?

V-4

7) Is LDM tested for having loaded the correct number of registers?
Is the wrap around of registers greater than sixteen tested?

8) [las it been verified that none of the load instructions affect
the flags? This should be done with the flags set at both one
and zero.

9) [ave the push and pop functions been tested with both word
and long word operands? Have all possible registers and pairs

been tested for autodecrement (push) and autoincrement
(pop) functions? Has the conflict between the immediate
push word and the imnediate push long word commands been
resolved?

10) Has the operation of all of the load and exchange instructions
been verified by data reads?

C) Arithmetic

1) Has the add function been tested by adding the four possible
bit combinations with and without carry for each bit position?
Have the two add instructions been tested for both word and
byte operands?

2) Has the subtract function been tested by performing the same
tests as for the add function?

3) Has the compare function been tested for byte, word, and
long word operands?

4) Has the increment function been tested for both word and byte
operands?

5) Has the decrement function been tested for both word and byte
operands?

6) Has the multiply function been tested for both data types?

7) Has the divide function been tested for both data types? Has

the instruction been aborted by the division by zero,
underflow, and overflow conditions? Has the abort been

confirmed by both the divide register pair and divide register
quadruple variant?

8) Has the sign extension instruction been tested for byte, word,
and long word operands?

V-5

9) Have all thirteen possible actions of the decimal adjust
function been verified? How is the decode circuitry for the
decimal adjust implemented? Has it been exercised sufficiently
to detect all stuck at faults?

10) Has the flag operation of all of the arithmtic instructions
been verified for all possible flag changes?

D) Logical Instruction

1) Have the AND, OR, and XOR instructions been tested by the
application of the following patterns to each bit position?

a) (0,0), (0,1), (1,0) for OR operations

b) (0,1), (1,0), (1,1) for AND operations

c) (0,0), (0,1), (1,0), (1,1) for XOR operations

d) Have all three instructions beon tested for by'te and
word operands?

2) Have the complement instructions been tested by complementing
each bit for both zero to one and one to zero transitions and

for word and byte operands?

3) Has the test instruction been tested for both word and byte

operands?

4) Has the correct operation of flags been tested and verified

for each logical instruction and for each possible flag

combination?

E) Program Control

1) Have all of the program control operations been tested, in
both the segmented and non-segmented modes, to insure the

correct selection of the implied stack pointer register or

register pair?

2) Where used, all condition codes should be tested for correct
operation in both the true and false states, while all other

flags which are not referenced remain in the opposite state.

a) Is call tested in both segmented and non-segmented modes?

b) is call relative tested as call and for both positive and

negative 2K jumps?

c) Are DJNZ/DBJNZ tested for the full +2, -252 range?

v-6

d) Is JP tested for all condition codes and in both segmented
and non-segmented modes?

e) Is JPR tested for all condition codes and for the full
-254/+256 range?

f) Is RET tested in both segmented and non-segmented modes and
for all condition codes?

g) Is system call tested in both segmented and non-segmented
modes? In the decrement of the stack pointer register(s)
verified?

h) Is IRET tested in both segmented and non-segmented modes?
Are the decrement of the stack pointer(s) and disposition
of the stack data verified?

F) Bit Manipulation

1) Is BIT tested by setting the selected bit to a true and false
state while all other bits are in the opposite state?

2) Are all bits tested and are static and dynamic operations on
word and byte data verified?

3) Are bit set and reset instructions tested as in (1) above?
Are the test and set instructions tested by setting all bits
to zero prior to testing the instruction? Are the proper flags
set?

4) Is TCC tested for all possible condition codes, true and
false? Is it verified that the indicator bit is set, but

not reset, for byte and word operands?

G) Shift and Rotate Instructions

1) Insure left and right rotates function correctly for both
single and double position rotations and for byte, word,
and long word operands.

2) Insure proper set aLd reset of carry bit for both single and
double position rotations of the rotate through carry commands
and for byte and word operands.

3) Insure digit rotates function correctly.

4) Insure correct flag sets/resets for the above commands for all

possible combinations of the flag bits.

5) Insure left and right dynamic shifts function correctly.

v-7

6) Insure left and right static shifts function correctly.

7) Insure the failure of the instruction if the number of

positions to be shifted is greater than that allowed for byte,
word, and long word data types. Insure that zero shifts, where

undefined, are nondestructive of register data, and that the
flags, where defined, are set as required by the data
contained in the register(s).

8) Insure that all possible combinations of flag sets/resets are

performed as required by the instructions and data.

H) Block Transfer and String Manipulation Instructions

1) Insure that the transfer and string instructions are

interruptible and that the instructions continue correctly
after an interrupt has been serviced.

2) Compare commands

a) Insure that the commands function for both word and byte
operands.

b) Insure that the loop counter register functions properly.

c) Insure that the pointer registers increment/decrement as
required by the instruction.

d) Insure that all flags are set and reset as required by
the data.

e) Insure that "automatic" functions repeat as required,
function as specified, and terminate on both counter at

zero and condition code satisfied conditions.

3) Load Commands

a) Insure that the pointer registers are incremented or
decremented as required.

b) Insure that the automatic functions repeat as required,
function as specified, and terminate on counter register
at zero.

c) Insure that the flags are not affected.

4) Translate Test Commands

a) Insure correct translated address output.

v-8

b) Insure correct flag setting/resetting.

c) Insure correct pointer register operation.

d) Insure correct termination on either counter register at

zero or condition codes non zero as applicable.

1) Input/Output

1) Insure operation of system trap for all instructions when

operating in normal mode.

2) Insure proper register modification and termination of the
"automatic" input and output instructions. Insure

interruptibility and continuation after interrupt of

these instructions.

3) What happens when an even byte access is attempted for normal

I/0 and odd byte addressing is attempted for special I/O?
Should these conditions be tested and are they ?

4) Insure that word and byte operands are input or output as

required.

5) Insure that the correct flags are set or reset as required.

J) CPU Control Instructions

1) Is COMFLG tested by complementing each of the flags from a

1--0 and 0--1? It should be verified that only one flag is

affected at a time. Is the instruction tested for the

condition where no flag is defined?

2) Is DI tested by disabling each interrupt separately and then

requesting service in both system and normal modes?

3) Is El tested as in (2) above?

4) Is halt tested for continued memory refresh and recognition of
interrupts, reset, and bus requests?

5) Is LDCTL tested for each possible register and are the register
contents subsequently verified, in both system and normal modes?

6) Is LDCTLB tested and are the contents of the flag byte verified?

7) Is LDPS tested for segmented and non-segmented operation, in

system and normal mode, and are the register contents verified?

V- 9

8) Are multiprocessor instructions (MBIT, MREQ, MRES, MSET) tested

for the proper set or reset of the multimicro out line? Are the
correct functioning of the test instructions and flag
sets/resets verified? Is register manipulation of the MREQ

instruction verified? Are all multiprocessor instructions
tested in system and normal modes of operation?

9) Is NOP tested?

10) Are set/reset flag commands tested by changing each selected
flag while all other flags remain in their previous state?
Is the condition where no flag is defined tested for each
command? Are the register contents verified?

3) External Trap/Interrupt Control

A) General

1) Has it been verified that simultaneous traps/interrupts are
prioritized as shown in the list below (descending order)

1) reset

2) internal trap

3) non-maskable interrupt

4) segment trap

5) vectored interrupt

6) non-vectored interrupt

2) Has it been verified that reset is serviced regardless of
processor state?

3) Has the nesting of interrupts and traps been verified?

4) Has it been verified that the correct PSAP vectors are
loaded into the CPU by the interrupt and trap requests?
Has it been verified that the correct FCW is loaded?

5) Has the processor's change from normal to system mode been
verified for all traps and interrupts?

6) Has the instruction fetch abort been verified for interrupts
and traps? Has proper PC operation been verified for this
condition?

V-10

B) Non Maskable Interrupts

1) Has it been verified that this interrupt is asynchronousl

detected by activating it at various times?

2) Has it been verified that this interrupt is edge triggered by
holding it in the active state and observing that it is

serviced just once?

C) Nonvectored Interrupts

1) Insure the mask bit is functional by testing both true and false

masks with all other mask bits held in the opposite state.

2) Insure that the vector is correctly translated as a PSAP

address pointer.

3) Insure that the input is sampled only during the last clock

cycle of an instruction.

4) When will an interrupt be accepted if requested during the

first clock cycle of an E1 instruction? Is this verified?

D) Vectored Interrupts

1) Insure the mask bit is functional by testing both true and false

masks with all other mask bits held in the opposite state.

2) Insure that the vector is correctly translated as a PSAP

address pointer.

3) Insure that the input is sampled only during the last clock

cycle of an instruction.

4) When will an interrupt be accepted if requested during the

first clock cycle of an E1 instruction? Is this verified?

E) Notes

1) Each interrupt or trap should be tested with all others

inactive, except during the testing for interrupt priority
and nesting.

2) The transfer of the correct FCW and PC counter must be
verified.

3) The storage in the implied stack of an identifier and the

PC and FCW must be verified for all traps and interrupts.
This will require the storage of 4 words for the Z8001,
but only 3 for the Z8002.

v- I I

4) Multi Micro Control

A) Is the micro in line received? Is it verified with thp micro input

test instruction?

5) Bus Control

A) Insure the tri state function of all processor outputs,
except BUSAK, after the machine cycle in which the BUSRQ

was requested.

B) Insure BUSAK is asserted when (A) occurs.

C) Insure return to normal operation 2 clock cycles after BUSAK has

been released.

6) CPU Status Information

A) Insure that the status lines can reflect all possible CPU status.

B) Insure that the N/S line reflects the processor control bit.

C) Insure that the R/W line reflects the current operation's function.

D) Insure that the B/W line reflects the current operation's function.

7) Register Control

A) Have all registers (including both sets of stack pointers, the

refresh register, the FCW, NPSAP register pair, and the PC
register pair) been tested for bit independence by having each
bit assume a one and a zero state while all other bits, either
individually or collectively, are in the opposite state?

B) Can all word length and byte length registers be addressed/selected?
For implied stack operations, is the correct stack register selected
by referencing the system/normal mode bit? Has segmented/
non-segmented operation been tested?

C) Have the address/data and segment number outputs been tested for

bit independence by having each bit assume a one and a zero

state while all other bits, either individually or collectively,
are in the opposite state?

D) Has it been confirmed that register RO follows R15 in the
multiple register load commands?

E) What are the results of attempting paired and quad register
operations on odd boundaries? Is it necessary to attempt these
operations? Are they done?

V-12

F) Has it been verified that any register may act as a counter
(looping commands), stack pointer or index (shift, rotate
commands)?

G) Has the segment register been tested for arithmetic isolation
from the PC offset? Is this done?

8) CPU State Control

A) Insure refresh operation continues when STOP is applied.

1) Insure one refresh cycle after the release of STOP.

2) Insure that STOP is sampled on the falling edge of the clock,
preceeding the second word fetched, when the EPU bit is set in

the control word and an extended instruction has been fetched.

3) Insure that STOP is sampled on the falling edge of the clock,

of the first cycle of an instruction fetch, if the EPU bit is
not set.

B) Test reset function to

1) Insure 5 cycle response of processor to RESET.

2) Insure that, after RESET is inactive for 3 cycles, the
processor fetches 3 words (8001) or 2 words (8002).

3) Insure that the segmented response occurs even when
processor was operating in the non-segmented mode.

C) Insure that the WAIT line functions

9) Miscellaneous

A) High Impedance Capability

1) Insure that ADO-AD15, AS, DS, MREQ, R/W, B/W, STO-ST3,
N/S, SNO-SN6 enter the high Z state as required by the

bus request/acknowlege sequence.

2) Insure ADO-AD15 enter high Z state when internal cycles
occur and during wait states.

B) Insure the function of the refresh circuits

1) Masked and non-masked operation.

2) Insure multiply instruction fuinctions with refresh running.

V-13

•-

3) Test all possible refresh ratios and verify their correct
operation.

4) Insure that refresh is accomplished before an interrupt or
trap is honored (simultaneous arrival of requests).

5) Insure that the auto refresh of skipped refresh address
occurs after a skipped refresh period, along with the normally
occurring refresh.

C) Other architectural considerations

1) Is the program counter incremented by the ALU or separate

circuitry? If a separate circuit is used, it must be verified
that it functions as specified. This should include testing
which verifies the change of state of the most significant
as well as low order bits. Isolation of the offset value
from the segment value should also be verified, using the

overflow of the offset register as the test vehicle.

2) Is a separate arithmetic unit used to increment or decrement

the address registers or to decremient the counter register
in the auto increment/decrement instructions? If so, this
unit should be tested as in (I) above.

3) Several constant values are supplied to the ALU. These include

the decimal adjust command's correction values, the
incremental or decremental values for the auto increment

and decrement instructions, etc. All constants should be

verified during the functional test.

V-14

I

APPENDIX A

Z8001 TASK BENCHMARKS

1. Z8001 Block Move

This routine moves a block of data from one point in memory to any
other point in memory.

Register Use RR2 Address of the first word of the source block
RR4 Address of the first word of the destination block
R6 Number of words to be moved

Symbol Table Stara: Address of first word, source block
Stard: Address of first word, destination block
Count: Number of words to be moved

Command Bytes Cycles Comment

LDL RR2, #Stara 6 II Initialize register
LDL RR4, #Stard 6 11 Initialize register

LD R6, #Count 4 7 Initialize register

LDIR RR4, RR2, R6 4 11 + 9n Perform move and loop

Total bytes: 20

Total cycles: 40 + 9n

where n is the number of array elements

A-1

- II

2. Z8001 Array Addition

This routine adds two arrays of equal arbitrary length, composed of 16

bit words, located anywhere in memory. The result, also assumed to be
16 bits, is then stored in any desired memory location.

Register Use RO Result of addition
Ri Offset of all three terms
R2 Number of elements to be added

RR4 Base register for A array
RR6 Base register for B array
RR8 Base register for result array

Symbol Table A: Offset value for A array
B: Offset value for B array

C: Offset value for result array

Count: Number of elements to be added

Command Bytes Cycles Comments

LDL RR4, A 6 11 Initialize registers
LDL RR6, B 6 11 Initialize registers
LDL RR8, C 6 11 Initialize registers
CLR RI 2 7 Initialize registers
LD R2, #Count 4 7 Initialize registers

Loop LD RO, RI (RR4) 4 14 First word loaded

ADD RO, (RR6) 2 7 Second word added
LD RO (RR8), RO 4 14 Result to desired array
INC Ri, 2 2 4 Index register updated
INC R7, 2 2 4 B array pointer updated
DJNZ R2, Loop 2 it Loop if not all added

Total bytes: 40

Total cycles: 47 + 54n

where n is the number of array elements

A-2

' --II I II I i i i ii ...

3. Z8001 Array Multiplication

This routine multiplies two arrays of equal arbitrary length, composed

of 16 bit words, located anywhere in memory. The 32 bit result is then

stored in any desired memory location.

Register Use RR2 Results of multiplication
R4 Number of elements to be multiplied

RR6 Base address of multiplier array

RR8 Base address of multiplicand array

RR10 Base address of result array

Symbol Table A: Base address of multiplicand

B: Base address of multiplier

C: Base address of product array

Count: Number of elements to be multiplied

Command Bytes Cycles Comment

LDL RR6, #A 6 II Initialize register

LDL RR8, #B 6 II Initialize register

LDL RRLO, #C 6 11 Initialize register

LD R4, #Count 4 7 Initialize register

Loop LD R3, (RR6) 2 7 Load multiplicand

MULT RR2, (RR8) 2 70 Perform multiplication

LDL (RR10), RR2 2 17 Store result

INC R7, 2 2 4 Increment address pointer

INC R9, 2 2 4 Increment address pointer

INC RII, 4 2 4 Increment address pointer

DJNZ R4, Loop 2 11 Decrement element count

and loop

Total bytes: 36

Total cycles: 40 + 117n

where n is the number of array elements

A-3

4. Z8001 Array Sort

This routine sorts an arbitrary length array of 16 bit words into

descending order. The resulting array may be located anywhere in
memory, while the source array is destroyed.

Register Use RO Largest value found

R3 Working counter

R4 Number of words to be sorted

R5 Working counter

RR8 Source array base address
RRIO Destination array base address

RRI2 Working address in source array

RRI4 Address of largest word

Symbol Table A: Unsorted array base address
B: Sorted array base address

Count: Number of words to be sorted

Command Bytes Cycles Comment

I. LD R4, #Count 4 7 Initialize registers

2. LD R3, R4 2 3 Initialize registers
3. LD 1 RR8, #A 6 11 Initialize registers

4. LD 1 RRIO, #B 6 II Initialize registers

5. Oloop LD R5, R4 2 3 Initialize inner loop

6. LD I RR2, RR8 2 5 Initialize inner loop

7. Iloop LD RO (RR2) 2 7 Update largest word

8. LDL RRI4, RRI2 2 5 Save location of that

word
9. CPIR RO, RRl2, R5, CT 2 11 + 9n Compare to string

10. JP 7, Iloop 4 8 Update if larger
11. LD (RR10), RO 2 8 Transfer to sorted

array

12. CLR (RRl4) 2 7

13. INC R11, #2 2 4 Increment pointer

14. DEC R3, #1 2 4 Decrement outside

counter

15. DJNZ R4 Oloop 6 10 Jump if not all

sorted

Total bytes: 46

Worst case cycles 9n 2 + 72n + 32 + 12(1+2+3...(n-1))

Best case cycles 9n 2 + 72n + 32

Where n is the number of array elements

A-4 .1

Timing notes

Worst case timing, when the array is in ascending order, will require that
lines 7 and 8 be repeated (n - (D - 1)) times, where D is the number of
words already sorted. The best case timing, with the array already in
ascending order, will not repeat these lines at all.

I

A-5

*1..300

5. Z8001 Interrupt Service

This routine services an interrupt storing 8 word length registers and

restoring them before returning to the main routine. The latency time

is that of a register word length division, which is comparable to

the 8086 IDIV instruction

Action Cycles Comment

Latency 107 DIV, Register

Abort following instruction fetch 3
Interrupt acknowledge 8
Save 4 word registers 36 Push FSW and PC

Get new processor status 12 Load new FSW and PC

Save 8 word registers 72 Push

Restore 8 word registers 64 Pop

Return from Interrupt 16 IRET

Total cycles = 318

Time required = .08 msec

A-6

APPENDIX B

8086 TASK BENCHMARKS

1. 8086 Block Move

This routine moves a block of data from one point in memory to any
other point in memory

Register Use SI Offset of first word of destination array

DI Offset of first word of source array
ES Segment where destination string is to be located
DS Segment where source string is located

CX Number of words to be moved

Symbol Table Stara: Offset of first word of source array

Stard: Offset of first word's location in destination
array

DSEG: Destination segment
SSEG: Source string segment location
Count: Number of words to be moved

Command Bytes Cycles Comment

CLD 1 2 Clear direction flag

MOV DI, #Stara 3 A Destination index set

MOV SI, #Stard 3 4 Source index set
MOV AX, #DSEG 3 4 Destination segment to

accumulator
MOV ES, AX 2 2 Destination segment set
MOV AX, #SSEG 3 4 Source segment to

accumulator
MOV DS, AX 2 2 Source segment set
MOV CX, #Count 3 4 Count register initialized
REP NZ MOVS 2 9 + 17n Perform moves

Total bytes: 22

Total cycles: 35 + 17n

where n is the number of array elements

B-I

-*1I I' I 'L-r'W~ i ;:' ..

2. 8086 Array Addition

This routine adds two arrays of equal arbitrary length, composed of
16 bit words, located anywhere in memory. The result, also assumed to

be 16 bits, is then stored at any desired memory location.

Register Use BX Offset value for added array
DS Location segment of "A" array
ES Location segment of "B" array
SS Location segment of result array
BP Offset value for result array

Symbol Table Stara: Constant offset of "A" array
Stard: Constant offset of "B" array

Starr: Initial offset of result array
Count: Number of elements to be added
Seg D: Segment where "A" array is located
Seg E: Segment where "B" array is located
Seg S: Segment where result is to be located

Command Bytes Cycles Comment

MOV BX, #0 3 4 Initialize registers
MOV AX, #Seg S 3 4 Initialize registers
MOV SS, AX 2 2 Initialize registers
MOV BP, #Starr 3 4 Initialize registers

MOV CX, #Count 3 4 Initialize registers
MOV AX, #Seg D 3 4 Initialize registers

MOV DS, AX 2 2 Initialize registers
MOV AX, #Seg E 3 4 Initialize registers
MOV ES, AX 2 2 Initialize registers

Loop MOV AX, Stara (BX) 4 18 Move first word to
accumulator

ADD AX, ES: Stard (BX) 4 20 Add second result to
accumulator

MOV (BP), AX 3 13 Move result to storage array
ADD BP, #2 4 4 Update address pointer
ADD BX, #2 4 4 Update address pointer

LOOP NZ Loop 2 19/6 Loop to add if CX = 0

Total bytes: 45

Total cycles: 36 + 78n

where n is the number of array elements

B-2

3. 8086 Array Multiplication

This routine multiplies two arrays of equal arbitrary length, composed
of 16 bit words, located anywhere in memory. The 32 bit result is then
stored at any desired location in memory.

Register Use BX Offset of operands
BP Offset of product
DS Segment where multiplicand is located
ES Segment where multiplier is located
SS Segment where product array is to be stored
CX Number of elements to be multiplied

Symbol Table Star A: Constant offset of multiplicand array
Star B: Constant offset of multiplier array
Star C: Initial offset address of product array
Seg S: Segment where result array is to be stored
Seg D: Segment where multiplicand array is stored
Seg E: Segment where multiplier array is stored
Count: Number of elements to be multiplied

Command Bytes Cycles Comment

MOV BX, #0 3 4 Set multiplier element offset
MOV BP, #Star C 3 4 Result offset initialized
MOV AX, #Seg D 3 4 Multiplicand segment to

accumulator
MOV DS, AX 2 2 Multiplicand segment

initialized
MOV AX #Seg E 3 4 Multiplier segment to

accumulator
MOV ES, AX 2 2 Multiplier segment

initialized

MOV AX, #Seg S 3 4 Result segment to
accumulator

MOV SS, AX 2 2 Result segment initialized
MOV CX, #Count 3 4 Element count initialized

Loop MOV AX, ES: Star A (BX) 5 19 Multiplicand to accumulator
IMUL Star B (BX) 4 149 Multiplication done
MOV Star C (BP), AX 3 14 Store high element
ADD BP, #2 4 3 Increment result pointer
MOV Star C (BP), AX 3 14 Stored on element
ADD BP, #2 4 3 Increment result pointer
ADD BX, !2 4 3 Increment)perand pointer
LOO "'"., , !.,) Iun ,

=

Total bytes: 51

rotal cycles: 3h +- 23(n

,' r. ' 'fi- % lt lb ,, t*Y :

4. 8086 Array Sort

This routine sorts an array of words located anywhere in memory into
descending order. The resulting array is stored in any other location
in memory, while the source array is destroyed.

Register Use BP Offset pointing to storage location of next
sorted word

CX Internal loop counter
DX External loop counter

DI Internal loop address index I
SI Internal loop address index 2

ES Number of words to be sorted
DS Segment where unsorted array is stored
SS Segment where sorted array is to be stored

Symbol Table Count: Number of words to be sorted
Seg D: Unsorted array's segment

Star S: Unsorted array's offset
Seg S:- Sorted array's segment
Star D: Initial word's offset, sorted array

Command Bytes Cycles Comment

1. MOV AX, #Seg S 3 4 Sorted segment initialized
2. MOV SS, AX 2 2 Sorted segment initialized
3. MOV AX, #Count 3 4 Count initialized
4. MOV DX, AX 2 2 Count initialized
5. DEC AX 1 2 Count initialized
6. MOV ES, AX 2 2 Count initialized
7. MOV AX, #Seg D 3 4 Unsorted segment initialized
8. MOV DX, AX 2 2 Unsorted segment initialized
9. MOV BP, #Star D 3 4 Sorted offset initialized

LO. Oloop MOV CX, ES 2 2 Internal count initialized
11. MOV SI, #0 3 4 Loop index initialized
12. MOV DI, #2 3 4 Loop index initialized
13. MOV AX, Star S (SI) 4 17 Load first word
14. Iloop CMP AX, Star S (DI) 4 18 Compare to second
15. JLE Cont 2 16/4 Jump if first is greater
16. MOV SI, DI 2 2 Move element address
17. MOV AX, Star S (DI) 4 17 Move larger element
18. Cont ADD DI, #2 3 4 Increment index
19. Loop NZ Iloop 2 19/5 Loop until all are compared
20. MOV Star D, (BP) 3 ip Mokle largest to sorted array
21. CIP DX, #0 3 4 All elements sorted?
22. JZ out 2 lb./ If so, done
23. MOV Star S (SI), h 19 lear largest value
24. ADD BP #2 3 4 Increment storage pointer
25. DEC DX I 2 Decrement outer counter
26. JMP Oloop 2 Begin sort again
27. 'hit Halt

Total bytes: 70

Worst case cycles: 91n 2
- 20n + 41

Best case cycles: 84n 2
- 13n + 41

where n is the number of array elements

Timing notes

a) The compare loop (lines 10 - 19) is done (n-l)n times. Thus lines
10, 11, 12, 13, 14, 18 and 19 (taken) occur n(n-1) times per use of

the routine.

b) The storage of the largest element found in the unsorted array occurs
n times per routine use. Thus lines 19 (not taken), 20, 21, 22 (not

taken) 23, 24, 25 and 26 occur n times.

c) Lines 1 through 9 and 22 (taken) can be considered overhead, and occur

once per routine use.

d) In the best case situation, the routine is already in descending order.
Thus the jump on line 15 is taken n(n-1) times and lines 16 and 17 are

not used.

e) In the worst case situation, with the array to be sorted in ascending

order, the jump on line 15 is never taken, so lines 16, 17, and 15 (not

taken) are used n(n-1) times.

Best case = a + b + c + d

= 68(n)(n-1) + 71n + 41 + 16(n)(n-1)

= 84n 2 - 13n + 41

Worst case = a + b + c + e

= 68(n)(n-1) + 71n + 41 + 23(n)(n-1)

= 91n 2
- 20n + 41

B-5

5. 8086 Interrupt Service

This routine services an interrupt sorting 8 word length registers
and restoring them before returning to the main routine. The
latency time is that of the IDIV instruction, which is comparable
to the Z8001 word length division

Act ion Cycles Comment

Latency 184 IDIV
Interrupt Processing 61 Given by manufacturer
Store 8 word registers 88
Restore 8 word registers 64
Return from interrupt 24

Total cycles = 421

Calculated time - .08 msec

Expected run time (+5%)= .09 msec

B-6

APPENDIX C

ARITHMETIC MIX COMPOSITION

This mix is intended to test the relative arithmetic efficiency of micro-
processors. It is based on the mix "N", fire control simulation mix, but

lacks the floating point and transcendental operations of that mix, as these

operations are not hardware supported by either processor. The 23.2% of

the total instruction mix which was excluded has been proportionally divided

among the remaining categories of instructions. The input/output operations

were specifically increased in importance, however, to test the specific

I/0 commands available to the processors

Addressing modes are also tested beyond mix "N" specifications, as set out

in the table below. The base address category will, however, not only

include base address modes, but other addressing modes not included under

the direct address, indexed, or indirect register modes. These modes are

listed under the specific operation.

All operations are assumed to be on 16 bit, binary numbers, unless otherwise

mentioned. Signed numbers are also assumed.

Mix 'IN" less
floating point Microprocessor Mix

Operation operations used for benchmark

1) Data Transfers 46 59.1

2) Arithmetic
Addition 3 3.95

Subtraction 3 3.95

Multiplication .15 .2

Division .05 .1

3) Shift/Rotate 1.5 1.95

4) Compare .7 .95

5) Branches
Unconditional 3.1 4.0

Conditional, taken 3.1 4.0

Conditional, not taken 3.8 4.95

Loop control, taken 3.8 4.95

Loop control, not taken 1.5 1.95

6) Index Register Operations 5.5 7.21

7) Logical 1.5 1.95

8) Input/Output .1 .79

Totals 76.8% 100%

C-I

Addressing Modes

50% of addressing is in direct mode
25% of addressing is in the indirect mode
15% of addressing is in the indexed mode
10 of addressing is in the base mode

C-2

APPENDIX D

Z8001 ARITHMETIC MIX RESULTS

1. Data transfers 5910 operations

Cycles Totals
a) 2955 register to memory

1) 1478 direct address
739 short offset 12 8,869
739 long offset 14 10,346

2) 739 indirect register 8 5, 904
3) 443 indexed address

222 short offset 12 2,264
221 long offset 15 3,315

4) 295 based (BX, BA, RA) 14 4, 130

b) 2955 memory to register
1) 1478 direct address

739 short offset 10 7,390
739 long offset 12 8,868

2) 739 indirect address 7 5, 173
3) 443 indexed address

222 short offset 10 2, 220
221 long offset 13 2,873

4) 295 based
199 BA, BX, or RA 14 2,756

96 immediate 7 672

Total cycles required: 64,780

2. Arithmetic 820 operations

a) Addition 395 operations
1) 198 direct address

99 short offset 10 990
99 long offset 12 1, 188

2) 99 indirect register 7 693
3) 59 indexed

30 short offset 10 300
29 long offset 13 377

4) 39 based
20 register 4 80
19 immediate 7 133

D-1

2. Arithmetic (cont'd.)

Cycles Totals

b) Subtraction 395 operations
1) 198 direct address

99 short offset 10 990
99 long offset 12 1,188

2) 99 indirect register 7 693
3) 59 indexed

30 short offset 10 300
29 long offset 13 377

4) 39 based
20 register 4 80
19 immediate 7 133

c) Multiplication 20 operations

1) 10 direct address
5 short offset 72 360
5 long offset 74 370

2) 5 indirect register 70 350
3) 3 indexed

2 short offset 72 144
1 long offset 75 75

4) 2 based (immediate or register) 70 140

d) Division 10 operations
1) 5 direct address

3 short offset 97 291
2 long offset 99 198

2) 2 indirect register 95 190
3) 2 indexed address

1 short offset 97 97
1 long offset 100 100

4) 1 based (immediate or register) 95 95

Total cycles required: 9932

3. Shift/rotate 195 operations

a) Rotate 98 operations
49 rotate right/left I pla- 6 294
49 rotate right/left 2 places 7 343

b) Shift 97 operations
49 shift right/left I place 18 882
48 shift right/left 8 places 39 1, 872

Total cycles required: 3191

D-2

ii i i I ' 1IF [M4 I ,

4. Compare 95 operations

Cycles Totals

a) 43 direct address
22 short offset 10 223
21 long offset 12 252

b) 24 indirect register 7 168
c) 17 indexed

9 short offset 10 90
8 long offset 13 104

d) 11 based
6 immediate 7 42
5 register 4 20

Total cycles required: 896

5. Branch instructions 1985 total operations

a) Branch instructions 1295 operations
1) 648 direct address

324 short offset 8 2,592
324 long offset 10 3,240

2) 324 indirect register
216 unconditional or taken 15 3,240
108 not taken 10 1,080

3) 194 indexed address
97 short offset 8 776
97 long offset 11 1,067

4) 129 base addressed (RA) 6 774
b) Loop control 690 operations 11 7,590

Total cycles required: 20,359

6. Index register operations 721 operations

1) 361 direct address 2353
181 short offset 13 637
180 long offset 15 735

2) Indirect register mode not available 2700
for this instruction

3) 180 indexed address 1170
90 short offset 13 325
90 long offset 16 1440

4) 180 base address (BX, BA, RA)
48 no timing differences 15 2700

Total cycles required: 10363

D-3

7. Logical operations 195 operations

Cycles Totals

a) AND 65 operations
1) 33 direct address

17 short offset 10 170
16 long offset 12 192

2) 16 indirect register 7 112
3) 10 indexed

5 short offset 10 50
5 long offset 13 65

4) 6 based addressed
3 immediate 7 21
3 register 4 12

b) Complement 65 operations
1) 33 direct address

17 short offset 16 272
16 long offset 18 288

2) 16 indirect register 12 192
3) 10 indexed register

5 short offset 16 80
5 long offset 19 95

4) 6 based address
6 register 5 30

c) OR 65 operations

1) 33 direct address
17 short offset 10 170
16 long offset 12 192

2) 16 indirect address 7 112
3) 10 indexed address

5 short offset 10 50
5 long offset 13 65

4) 6 based
3 immediate 7 21
3 register 4 12

Total cycles required: 2201

8. Input/Output operations 79
40 input/output, direct address 12 480
39 input/output, indirect address 10 390

Total cycles required: 870

Cycles required for entire mix: 1i2,592

Time required to "execute" mix: 28.2 msec

D-4

APPENDIX E

8086 ARITHMETIC MIX RESULTS

The following address modes are used in both arithmetic and word processing

mix evaluations:

Mix Mode 8086 Address Mode

Direct Address Direct 16 bit offset added to D.S. This takes 6

clock cycles to compute.

Indirect Register Indirect, through the su. of a base or index
Address register added to D.S. The calculation requires

five clock cycles.

Indexed Address Indirect, through the sum of a base register and an

index register added to D.S. Computation of the
address requires 8 clock cycles.

Base Indexed Address The same as indexed, but with a constant offset

added. This address requires 12 clock cycles to

compute.

Base Address Indirect, through the sum of a base or index reg-

ister, a displacement constant, and D.S. This
address requires 9 clock cycles to compute.

1. Data transfer operations 5910 operations

Cycles Total

a. 2955 Register to Memory

1) 1478 Direct address 15 22,170

2) 739 Indirect register 14 10,346

3) 443 Indexed 17 7,531
4) 295 Based

148 Based 18 2,664

147 Base Indexed 21 3,087

E-1

1. Data transfer operations (cont'd) 5910 operations

CXcles Total

b. 2955 Memory to register

1) 1478 Direct address 14 20,692

2) 739 Indirect address 13 9,607

3) 443 indexed 16 7,088

4) 295 Based

99 Immediate 4 396

93 Base 17 1,666

98 Base indexed 20 1,960

Total cycles required: 87,207

2. Arithmetic 820 operations

AUdltlion 395 operations

1) 198 Direct address 15 2,970

2) 99 Indirect address 14 1,386

3) 59 Indexed 17 1,003

4) 39 Based

10 Register 3 30

10 Immediate 4 40

10 Base 18 180

9 Base Indexed 21 189

b. Subtraction 395 operations

1) 193 Direct address 15 2,970

2) 99 Indirect address 14 1,386

3) 59 Indexed 17 1,003

4) 39 Based

10 Register 3 30

10 Immediate 4 40

10 Base 18 180

9 Base Index 21 189

c. Multiplication 20 operations

1) 'L Direct address 150 1,500

2) 5 Indirect address 149 745

3) 3 Indexed address 152 456

4) 2 Based

I Base 153 153

1 Index base 156 156

E-2

2. Arithmetic (cont'd.)

Cycles Total

d. Division 10 operations (16 bit signed)

1) 5 Direct address 183 915
2) 2 Indirect register 182 364
3) 2 Indexed 185 370
4) 1 Base addressed 186 186

Total cycles required: 16,441

3. Shift/Rotate 195 operations

a. Rotate 98 operations

1) 49 Rotate Right/left I bit 2 98
2) 49 Rotate Right/left 2 bits 16 784

b. Shift 97 operations

1) 49 Shift Right/left 1 bit 2 98
2) 48 Shift Right/left 8 bits 40 1,920

Total cycles required: 2,900

4. Compare 95 operations

a. 43 Direct address 15 645

b. 24 Indirect address 14 336

c. 17 Indexed 17 289

d. 11 Based

Register 3 3 9
Immediate 3 4 12
Based 3 18 54
Base indexed 2 21 42

Total cycles required: 1387

E-3

Cycles Total

5. Branch Instructions 1985 total operations

a. 1295 Branch instructions

1) 648 Direct address

324 conditional taken 16 5,184
324 conditional not taken 4 1,296

2) 324 Indirect register (JP) 11 3,564

3) 194 Indexed (JP) 26 5,044

4) 129 1Rased

Inter segment based (33) 33 1,089

Inter segment base indexed (32) 36 1,152

Intra segment based (32) 24 768

Intra segment base indexed (32) 27 864

b. Loop control instructions 690 operations

Loop, taken (172) 17 2,924

Loop, not taken (173) 5 865

Loops taken (172) 19 3,268

Loops not taken (173) 5 865

Total cycles required: 26,883

6. Index Register Operations 721 operations (LEA)

a. 361 Direct address 8 2888

b. 180 Indirect address 7 1260

c. 108 Indexed 10 1080

d. 72 Base

36 Base 11 396

36 Based indexed 14 504

Total cycles required: 6128

E-4

7. Logical operations 195 operations

Ccles Total

a) AND 65 operations
1) 33 direct address 15 495
2) 16 indirect register 14 224

3) 10 indexed 17 170
4) 6 based

register 2 3 6
immediate 2 4 8
based 1 18 18
base indexed 1 21 21

b) Complement 65 operations
1) 33 direct address 22 726
2) 16 indirect register 21 336

3) 10 indexed 24 240
4) 6 based

register 2 3 6
base indexed 2 28 56
based 2 25 50

c) OR 65 operations
1) 33 direct access 15 495
2) 16 indirect register 14 224

3) 10 indexed 17 170
4) 6 based

register 2 3 6

immediate 2 4 8
based 1 18 18
base indexed 1 21 21

Total cycles required: 3,298

8. Input/Output 79 operations

40 Input/Output fixed port 10 400
39 Input/Output variable port 8 312

Total cycles required: 712

Total cycles calculated to be required: 144,591

Calculated time required at 5 MHz: 29.0 msec

Expected "run" time (5% variance): 30.0 msec

E-5

I

m uiin

APPENDIX F

CR1 TERMINAL CONTROLLER MIX DEFINITION

This section details assumptions made about the specific task and assump-
tions made about the system architecture from which the CRT Terminal Control-
ler mix was extracted.

Task Definition

The task is based on a micropzocessor controlled, stand alone terminal of the
"electronic typewriter" type. All operations are concerned exclusively with
the input, modification, or output of ASCII characters.

The task itself consists of the input, storage and display of 3 pages of 48
lines with 80 characters per line. Operator errors are assumed to occur at
a rate of 5 errors per 80 characters written. Two of these require the
deletion of a character, two require the insertion of a character, and one
the changing of a character. After the entire three pages have been written,
line 23 of the second page will be deleted and a new one inserted in its
place. The text is scrolled from top to bottom once and then output to the
printer.

Although the microprocessor could be performing other tasks at the same
time, only the instructions necessary to accomplish the above operations
have been included in the benchmark. Furthermore, ideal system response has
been assumed, since this is to be a comparison of microprocessor efficiencies
rather than hypothetical system design. Some of the terminology of the
basic Cf1 based machine is included in the flow charting, because it is
descriptive and easy to use. It does not affect the mix.

System Assumptions

The system, shown in Figure F-I, consists of two major components, the con-

trol unit and the display unit.

The control unit contains -he microprocessor and its supporting circuits,
the system memory, and the keyboard and printer buffers. Some type of inter-
rupt masking capability is assumed, either on the microprocessor or as a
supporting peripheral. The system memory is accessible to the microprocessor
at all times.

The display unit contains a video timer and controller (VTAC), a 4K X 8
(48 line) display buffer memory, an offset latch for display memory address-
ing, supporting circuits for the VTAC, and address decoding logic. The VTAC
references the display memory for the display updates, allowing the micro-
processor access to t-. display memory during vertical blanking intervals.

F-1

Icjk

-4

F- 2

It should be noted that the cursor address and microprocessor video memory
address registers do not necessarily point to the actual memory row address.
The offset latch must be added to them to generate the actual row address.
This latch is accessible under the same conditions as the video unit memory.

Register Usage

Due to the limited nature of the task, the registers used are maintained
intact throughout the overall routine. Five registers are dedicated to the
storage or manipulation of data as defined below.

Register Function

"ll System memory address register

"B" Video memory address

"C" high byte offset latch value

"C" low byte Page or half page boundary for system's
displayed row 0

"Elf Multiple use (scratch pad) register

"For Multiple use (scratch pad) register

"G" high byte Maximum segment and Row used (system memory)

"'S" low byte Multiple use (scratch pad) register

Address Word Definition

The address bus, which is assumed to be 16 bits, is partitioned as below.

high byte low byte

MSB LSB

Row Address Character Address

Display Memory bit: Set to allow access,
with segment bits equal zero and video
interrupt set, to allow access to the
display buffer memory.

Segment bits: In conjunction with bit 7, these bits allow
access to 4 system pages of 48 lines plus the 48 lines of
display memory.

F-3

I __I

Access to the video buffer memory requires that both the segment bits and
display memory bit be set to zero.

With the display memory bit set to one , the segment bits allow access to
four pages of system memory. Data is stored in an x-y addressable block to
reduce the time required for system memory to video buffer memory data
transfers.

Flow Chart Language Notes

To decrease the effects of bias and experience on the benchmarking process,
the flow charts for the required processor routines are written in a hybrid
language. Notes on this language are given below.

Addressing Mode Chart Symbolic Definition

Indirect Register @ "X" Register contains address of operand

Register "X" Register holds operand

Immediate None Operand is part of, or immediately
follows instruction

General

a) Instruction format is

Instruction source, destination

b) Instructions such as set/clear bit are given in English for clarity,
although they are translated to assembly language for mix instruction
set extraction.

c) Hexidecimal numbers are used exclusively in the flow charts.

Flow Charts and Descriptions

The following pages contain flow charts and descriptions of the various
routines that are used.

F-4

Character Write Routine

This routine separates keyboard inputs into two separate groups. Control
inputs are then directed to the appropriate subroutines, while character
inputs are stored in both the display buffer and system memory. The final
section of the routine updates the address pointers and returns control to
the "wait" loop.

Section A performs general housekeeping and insures that no further keyboard
interrupts will be honored until the initial interrupt has been serviced.
An interrupt from the video unit is allowed and the routine loops until
access to the video buffer memory is allowed.

Section B separates allowed control functions from character inputs.

Section C stores the character.

Section D updates (increments) the cursor character position, the simplest
case of updating this address.

Section E is reached when the cursor points to the final character address
of a row. The row is incremented (if possible), the cursor and memory
pointers are set to the first character of the new row, and control is re-
turned to the "wait" loop.

Section F resolves the case where the maximum number of rows addressable by
the VTAC has been reached, but the offset buffer is not filled to capacity.

The buffer is incremented, the pointer set to zero, and the program returns
to the "wait" loop.

Section G is a parameter initialization segment, since this portion of the
routine is needed only when both the number of rows and the offset buffer
are at maximum capacity. This implies the need to update the entire video
buffer and, with the registers set to the required values, the display
update routine is called to perform this task.

F-5

4:.

Sot K.vboad nierutmk

Read Keyboard hLy O C

CSeobit Anle

Clear Vildeo InterrutMs

Video
Intl,,,,,

Sey~AS I I

r. r
e~~rnA 'Ioo I. '

In-

F-R-6

ASA

lA
• . T-tr.,_ 7

Di, ron t "B"

L"
A"

I ".-I

J.

-etnrn to

Sectt lou

I 1-7

o I

, p Clear Rol "A"

Moe high byte "A" to high

by te -r, "I

IV
SMove.0 tO ro r characterLet1

~Clear lol byte "B"

: To

FIGURE F-2B CHARACTER WRITE ROUTINE, CONT'D

F-7

11

igh - °
B

I'L

I on Oement high byte...

,'o IhI hi gh b, t t

mOW

offf

otfset eatc

Nlarky oar interr..,

.1ak

ot vide ntro t o w kti j.

ge uTo Ot,, ,a'l

T o ,C o l,, Il

FIGURE F-2C CHARACTER WRITE ROUTINE, CONCLUDED

F-8

Character Deletion. Routine

This routine deletes the character pointed to by the cursor. Video buffer
memory is updated first, followed by the system memory, and the final char-
acter of the line which will-be left blank.

Section A is used when the character to be deleted is the final character
of a line.

Section B modifies the video buffer memory.

Section C modifies the system memory and returns control to the calling
routine.

f

F- 9

!JI

8r
FIGURE F-3A CHARACyeR EEIN OTN

-1

Move

F-L

Move "E",@ 'T

V ADAIO 170 SENERAL ELECTRIC CO PITTSIELD MA ORDN4ANCE SYSTEMS F/S 9/2
ELECTRICAL CH4ARACTERIZATION OF ADVANCED MICROPROCESSORS. (U)
,AM SI S W HAJ24M. T M OSTROWS4I, S NEWTON F30"2-O-C-OAI

LWCLASSIFIED RADC-TR-1-126 ML2ffffffffffff

I fllfllfllfl..ffl.

Character Insertion Routine

This routine inserts a blank character at the current cursor address. The
final character of the line is lQst.

Section A allows for the insertion of the final character of a line.

Section B modifies the video buffer memory.

Section C modifies the system memory and returns control to the calling
routine.

F-12

Sr1f- A

Clear kroboaydIteep

coa CF 10 bye

.. e tor. A

FIGURE F-4A CHARA~CTER INSERUION ROUTINE

F- 13a

to

* IFIGURE F-4B CHARACTER INSERTION ROUTINE, CONCLUDED

F- 14

Line Deletion Routine

This routine deletes a line from the system memory and decrements the maxi-
mum row count automatically. The video buffer memory is then updated using
the display update routine.

Section A initializes the scratch pad registers.

Section B moves the characters.

Section C performs the update of pointers and sets the registers for the
display update routine.

F-15

• .

Rout ine

M-."A1t

1F- 16

Snn-io, C

F- "17

ne "E" t

Line Insertion Routine

This routine inserts a blank row at the cursor row address, automati-
cally incrementing the system's maximum address count and using the common
display update routine to modify the video buffer.

Section A initializes the routine's registers, updating the system maximum
address with step 8.

Section B moves the characters in system memory and increments the pointers
across the row.

Section C is a row decrement routine, decrementing the row address pointers
back to the desired row.

Section D inserts the blanks into the addressed row and sets the parameters
required for the use of the display update routine.

F-18

'41,

F- i, - t.

h "I1b

T, .)

S.1- co C 2

fte

DDecen=t reF',

FIGURE F-6B LINE INSE~rION RouTINE, COIVT'D

F-20

kEncnt C >

Section D

FIGURE F-6C LINE INSERTION ROUTINE, CONCLUDED

F- 21

Left or Up Cursor Movement Routine

This routine allows for cursor movement to the left or upward (toward the
initial line of the system memory) as indicated by the specific keyboard
command. A cursor left command at the first character of a row will leave
the cursor positioned at the last character of the row above. Automatic
scrolling is allowed using this pair of commands, as the video buffer
memory is updated by the display update routine.

Section A deals with the simple left movement of the cursor within a line.

Section B is an auto decrement section, its apparent complexity being the
result of the x - y addressing desirable when using a VTAC. This section
assumes no video buffer updating is required.

Section C assumes a video update is required, and decrements and initializes
the registers required to use that routine.

F-22

L~

Ra-

!,arntrtr

N. r~,ot~o 5.to o OU

FIGURE F-7A LEFT OR UP CURSOR MOVEMENT ROUTINE

F- 23

4

I ,Lr.

Ir

Set A. A"

Ducreovt Iu '

e o 111 1 b,1 AI"

t ,ou bte A"

Movet l -bte ";A to 80so

uharacter addres rettster

Return to

roultne

FIGURE F-7B LEFT OR UP CURSOR MOVEMENT ROUTINE, CONT'D

F-24

- !

w, l o, yte fl

dl'w ~ byte t

- 25m by e "l o c r o

__d...._ I.i-

Right or Down Cursor Movement Routine

This routine moves the cursor to the right or downward (toward the final
line of the system memory) on specific keyboard requests. Movement of the
cursor beyond the last character of a row results in its being positioned
at the first character of the next row. This routine allows automatic
scrolling through the system memory, but will not allow movement of the
cursor below the final printed line.

Section A provides the simple case of cursor movement within a line.

Section B determines if a display memory update will be necessary. If not,
it adjusts the cursor position and returns control to the calling routine.

If a display update will be required, the routine proceeds to Section C,
which sets the parameter registers and transfers control to the display
update routine.

F-2

F- 26

to Et,~

A A

FIGURE F-8A RIGHTr OR DOW4N CURSOR !'vEmENr Rotvr iN

F- 27j

Clear lc byte

W te 0 L. c-1.1 h.-t-
-gt

h gh bt.

t. -- 1 La',h
d r. f. Aft., I t n

set lov byte 80

Ret," b. ard inter-pt

L I L

R..ti-

rf...- A >

b t, 'cl. N

Yes

ly-

let --c"

jo

A"

.dj re.. I t:t

;lp
T

FIGURE F-8B RIGHT OR DOWN CURSOR MOVEMENT ROUTINE, CONCLUDED

F-28

jam"

Display Update Routine

This routine updates the video buffer memory by transferring data from the
system memory. It cannot be called directly, but is automatically called by

many routines (for instance, the line insertion/deletion routine).

No changes are made to the system memory by this routine.

Section A initializes the scratch pad registers used by the routine and sets
the offset latch to zero.

Section B moves the data.

Section C increments the address pointers through both system and the video
buffer memory, the latter, by the latching of offsets to the video buffer
latch. On completion, interrupt masks are cleared and control returned to
the calling routine.

F-2 9

sect 100 A bye'"(2)

C500 "1 F (3)

(5- 1 Ao t lt "C" 1. (5)

EnGtR r, 9 AOMNDSlYUDT OIN

I-I.F-0

Entry (C)

S.nc C . .nt hihbt F'()

Incrorret 10,' byte 'C.' (19)

-t.1Iou ~t. C" 7(20)

-ek (22)

FIGURE F- 9B COMMON DISPLAY UPDATE ROLurINE, CONCLUDED

F-3 1

print Routine

This routine outputs the entire written system memory to the system's
printing device. Neither system memory nor video buffer memory is modified
by this routine.

Section A inhibits the video interrupt, allowing the output of data to run
to completion, and outputs an entire line of characters before continuing to
Section B.

Section B increments the row pointer through the system memory until the
last written line is reached. At that point, interrupt masks are removed
and control returned to the calling routine.

F-32

Kn~rp ~..J

Set R- "E

FIGURE F-10A PR117t ROUTINE

F- 33

Cntr. A

Set -1~ 4

|nternr ut ..k

terr~tupt o.ek

Return to
Calling Routine

FIGURE F-10B PRINT ROUTINE, CONCLUDED

F-34

Final Mix Definition

The mix is determined by "running" the already defined task through the
outlines routines as required. The results of this process are shown in
Table F-1.

Note that this definition is free from bias in favor of any specific pro-
cessor and is, due to the large number of instructions, insensitive to errors
made in tabulating program steps. It should be noted that the task and pro-
grams required cannot be derived from the mix definition. Thus, most probable
errors are compensated for and the pure statistical mix desired for bench-
marking has been derived.

F-35

TABLE F-I WORD PROCESSING INSTRUCTION MIX DEFINITION

Command Address Mode

1. Clear register (word) N/A 742
2. Clear register (byte) N/A Jo
3. Set/Load byte Immediate 619
4. Ser/Load word Immediate 144

5. Move byte, register to register N/A 167
6. Move word, register to register N/A 1,157
7. Move byte, memory to register Indirect Register 107,520
8. Move byte, register to memory Indirect Register 119,040
9. Move byte, register to memory (I/) Direct address 11,999
10. Read memory to register, byte (i/0) Direct address 12,384
II. Clear memory (I/O) Direct address 12,384
12. Move # to memory, byte I/O Direct address 148
13. Move # to memory byte Direct address 34,753
14. Move # to memory byte Indirect Register 1,2&33
15. Increment register N/A 203,744
16. Increment byte register N/A 24,445
17. Decrement register N/A 1,575
IS. Add register Immediate 20
19, Logical AND to register Immediate 25
20. Subtract, from register Immediate 4
21. Logical OR to register Immediate
22. Clear/Set bit (I/0) Direct address 47,537
23. Conditional jump taken N/A 25,382

24. Conditional jump, not taken N/A 153,280

25. Unconditional jump N/A 98,344

Total Commands 857,463

F-36

I

APPENDIX G

Z8001 TEST PROGRAMS

This appendix contains the programs that were developed and used
during the characterization of the Z8001. The following describes the

use of each program:

1. SHM02 .EDT: Z80, pages G-2 through G-10, is the test program
used to characterize the Z8001. It uses a GO/NOGO functional
test with worst case input timing conditions. The outputs are
strobed at the vendor specified delays and pass/fail data is
recorded as temperature, Vec, frequency, duty cycle, and input
levels are varied.

2. Z8000. PIN: Z80, pages Cli and c-12, is the Z8001 pin arrange-
ment program used with the test program.

G-1

n Al 70: XI PIT~ V IR A 1 F ST PQ 0rk AA
I fin3fl *

I.nn * CI Or I TT TFST% FNr.T4'FFQ f r
I 1n'n * rFNJFwAL irltrrT~jIr ntj~t'%-F 4;!t%-

n7nn* PITTqFTH-..n, MAqAr4II-qFTT-,

1.ln n * mIl? P&PI n4~ r,ir.t :rAe0
I iinnf * N I T "IF -(, 4T T 'I :16RT~T &ulrnnrFS1.I4

I)A * I'bTF !in .1111Y 1QAIl
AA* PPVrQ~mFQ?

I Ilon *

I.no *

F*7f~ * cl 'Ip p)TT1C , n nr ,I ts .T, r iSI IL T F T FC A S1 r
an* o!W4F.; rA'QTsFT ryI-Fq I'FP THF r ~tf1Ljie74l.

I ~QnoI * TrF',.iYIF I Fr TPST -,DFrTg: rATTn. N!IBm'FQ -%#n~
;) 11* A')APTF(4 \jIIA S AS 1411 Aq I-Te%7 1T11S 19 T-4F

I;Ino* Fh1LL0,11Ir. 1fNF'jI1FTFN riqKi np macrruTC ?r&P

I ,70%nn * TFST SvFrTFTCATT1', :')ATA RflfI

I .,7or, *

I 7kA* TFqT TyPF/rn1j')TTTnN : FIMr T In% AI. R -no'l PLn T

It.-flflf * lA.I1FCr FTfLF Am

*Pl F DT T P II F

I . A an f% P11. Aq~~,-F FTtF ?I A nn

I .ATF~ ATI Y) 11

I -m(b-dTq I.T-,TT-r, TR TFkrFc%' PFOTT

#1 *(')f)* (Cl(FT V API)

1 (1P1-.1 f)AAA 1

G-2

I Ij. A AiM (I~q !A)t T'I AI,1 T A1) 1?P T Afi r)IvTA 11 4T A r)I

Is III TA A La ;4 ,,ftT w;r. T r-
* A I IRO

';.ii-i PI,- gg l z n)ATAT,nA?An,.qTnP,TVNT,v1SvI~ FT/

1 7 ')eu

I nt i) F Si&Ae~n)TIsFS filir's FilTrflKIS

14 A A A 1) 4,II4PnIITTKUF H'V6.eR(V) ,MPwSCL(V.vlteNq~V(VV,V):HP~laQ
'jfl~r~n Flit-lTTW"~ WPPrtq(V)?N0AP#;q

d~la V n n1) qwA fiiTT~iF

ti ~.llnfl jTFt TFFMP(V),(OnTF-OAP(N)ITP45flAk
'A..An" scikuI't~iF F V57()I,fVST(fl))Im~rT

a .I A I A FiolkfT1~ I isaT TFJ0(fb f) :TP'4c;nA

1I.I1no Apply W0Qv(t)

n nFVICF qPCTFT(C.TTIIN r'qfOTANI.S

4; A j 11) VrC%44X Z .?t

C; t1) %)f rr' % v h 7r

';* o% A flp V T L O Q

C*r)OA'I V(IH =).

C;1 '~ wri(2 fl.0V

3

got"

;.Ii#n * vrr LrWIP f(mh;rA,.r4

c;~n v -A me 7S

1;,I-)n* FkFr)'lF,,rY LM1 r1JIAPT

-,. I7nn, F#Ad X #%F0
r,,Imof Ft'f = IF#%

SIOn* IiTY cyrf F L',flp rW'sTAhJT9

c . 1 n OrT) 10A 2

C; ; ;p0 1) I jr = ,*I

9.P7on* FL6r TN'TTYAL17ATTlI
;. ?A() T F qT a n

1; nnf) PQN<?CR"Hr TFNR0FRATIIRF) Ynit YT.RP TO STAR

T wTrw?"
'*.A nn PPPNT<I1iprQ,*TYPF A I 70 STaRT N~TT'4 I?SC."

.~0~ PPN1(1?>C~p0TYUF: A P TO STAPT 'qTTH 71C."

C ;ni) PPRT<I?(,"YDF 4 1 TO) STAOT v4TTH ?3C .
r*,A/0IA P~ihir~i?>rQ,"TYPV A 14 TO 5,TAQT WTTw nC."

c;In PWtTh'T?>CP,"TYPF A 45 TO RTiPT W7T'. -%C."'
C;.EZAI1 arrFPT(1?'XCR."F'TFP yfilip CmnTCF. -,TTT,CO

%;.;Inn TF(TTT Fr) 11A,01,%6*flf

AAIO1 no LOG SFPIAL MIIM$F0

#,A;l(0 ACCF0TdI1-CR,"FN~rFs nFVTCF RFIPTAL NhAlF9-.,oCQ
n /I f)O L nrv AQK F PCI >;?

A*r) . n 1)r~p R6 F TWtC< 4 1 ,q ,.i)N

Qo nn n Pfl.YFP Ln~, 00MILF. 70 ~

4) -; '3)A CALL 66 . n

o. * fw)o r 0T (T T f 9 . or%, Q. n7 Q n9Q. I 01 1

o4.npnn r'~yn 10.nj3

Qnqno t WIP 1 0. X K='4, I ft

n*~' rrit n 1 0 . 0

G-4

I r% . nA I IFf i ?)in.A

In I ;I~n TFlAPT~l-P;)(k

1fl.flT1, P'PTNT .i**..******

I n .)iPnn POT KT Cw, -T%&FA'JFAIi "ur, TAP: In

In*07no IflPPA~DATPPC<IRTFv'"ip

1 . n'A SOF cD(TFP)
1I.noIO -FA~(FJ~~P TF IO 1*S

In~. 1 nnn' * F (a IP -0lA F P01 rnI0,)
I A, IR Ino - AI I I

1 0 .~~ I ;0 I (RS(TP 'A) IFIA
I* pi m r.~ n PlYicoT ADFAQ 1 ~ qT OIITSr

In15on~A 0PTIT< ,"T.ST AmfAPTFn*r)" WC

In.Pisnll rnfTF:?dv'nj:1n R((I*pt Hp..4ASF til" I O
I A.)) .O\F i Qf PI.A5 #1 F -

A .;n) 0V r MAPFC T (II'T T ATVP O

i .;)o A kk ar I r IT

I A. Ps rflNi -1FT OA* i 051TS

In;?n 0* 11)1 sAr VSF TvTH FP
I O.;)tl A Fr(F rgQ AT TS.l flMV1'q/

in~r~o ~l,, r4,pn~wqlPPL FRO WQTjr T~G SA5

I tA~ncwo T.'HYT~rT QFSFT -'ITH PN'

1.o 0 c;n 0 r) T erfv'JiFfr T T'P1IT FPn- nP!VFIW flA C'~x

I lfl I n~I lqriNt.,FfT ~j0Itl FpnO'i rRTVF 0#4 RFqFT
ifl*1hofl rALL OPTvF LFvvt rliu'J"~ni
I nl7f rAL L I I. n

I A.379 RAVTST

I1)f1tOnI * rPIVF LFVFt r.'WT0'I.

SC;

n 0% nfln LJQ T NT C 0 ,r QV TL "L DQV r)."Vril.-T VT,4 "H

11AQ~l*CALL V(((I~N T Po

I A n I n * VCC Cjfl-Tt~nlt

j T~ 1pfl) *

I A.I'io t_(riD 1 ; VCC=VA-TN,VmAY(,VTtir
I1A .'A a n P'4TVT Cq,rp,"vrr= ",vrre" VOLTS MrITY rYCLF= .OnmT-J

S 1 kTn ky *4 ,r-,Th~r,Co

1 1.Oi.%Of fln;PAQa,4,rwT,:'1 s"vrc"3,vrr

tA.t1fln ?F(vrC F0) S.9111.115

13.1 161) PPTN't CP,"CIPQFNT A%.59" AVPc;

G;-6

I A~~ rAl Pw7vT r C .? TF ST A &A rOTFD"

I A. 1 #,o W0 =;I' ~I *

i ;. O. ~I 7n qJy ;I nj.#y r~T
I k I)ivII C ALL iA..,11 Pr ni~ I

I ~ ~ r j I,.i k~f .II n I

I AA "i i Fop)FQ f,,ry r0,JTP01_

I~ ~ ~ ~~~= I*II A *****4*****************

*~~ j~,s%, j'i' .cAF, S. t;:"PIF(31. Sio

1) * ')~ FA 14 r''Q I F W F Q) r)C(F I

1 06 Qls~ F~ 0J~ = /F QF 1)

wr Not IT A CL T 0 TPO
0, Tw ,Ir T IAI 1~' 11-rI*I

I 6,.In1In I -) rY A4I- C I~f :oT hFIJT n1 T

I j, A 1 L I f A A P C < IF 5; TFN W F FQAT' P ~ E4 CYCLI
I Q, A o (fl r 4L I FT oYLF CnttTpDnMAenN

n 9 tA n (7'J ni N4 IV II

() *ul '"TV ryL %Avnj TFrW PFANT CN

IQIA rrr'anc TSI~ FST TA=YA
Q 0a i r -,jA 7 1W A5 ~ IT iT rAPAFI anN IT

e q ;~I A so aS Kr i I s INT H 0 j
IQ.t4'A kTrn)-AQF 2 ?.aV (IN AriRP

jo*Ijflr PwARF in Ani FVJ IANiq

1) COvA ASS 4TT44 PATTFPfl

* 1Q.I9I'I (Arq(n I '.T4 'TF '

G-7

* 1~?~ro o)1 l~J 4 i11' V~? (l, 1 crT

1t1 C?') rt)%4P6A;F ti Y yTlw PATTFPAN

AQvo SLw, i I$ f) (.4VPA TRI flT

11 . ?R N l- rno A~I~ Qe),ilk/ FW IARFO

(4. 4 1) t PwdSF qC = A')xS F P n~i
C) ijA C1 1 o papF Tprj qTT PATTFRN~
Ig.tjOA MARK('OR n 'TTA PATrF'?M

1iinn rTf(T 10.S,;

I q. A n PwAF Q j~i Fr iw Si 1Q.

q*j7AA CPFIQJ)oTH ATFW

191 *n TFqT =r1M0FT+iIAhl fO'

Iq 114 A n r A.M~ ? L)(L.n

I Q 4 C;A n ~ fNC rALLn rmj njT.

10. 7n CL - , Pl (A 1IIT T'T~C

cI) A ryrno TF(F, Fo 90 FRFO
*flCJOO r'nAn(F #T)J 4 f'FNnryC

c19.511) PQI~AfCJT N C1 PFO4Acj~o~r),

LnOAAA p,4AQ 2 F)~7fl'l' r~F onS~LnTERR

1Q~r~~nn nN'T~-G-!1,g~c7nn Q TIII

r4f) n % . 01, A SF 1 = F. ~i*f)ryrLf'w7nPm Fni# I M

SO f OQ' 0 6 m A F I il = #F)nyL-(N Fnp I'Jfloj5
r I O'll (711 , NF C I TO r'ATAPHNr-F (IM DATAI
CA* I I ;)' 1) WF 1 1I~N

1 1 n l 0 ISFI OpT"I it 1. i F .S

C;I Aon (I r r n .hF rip' .IIFPOm O)PIVFP f'llNi INS

~1 .01,00 I (WTIy I *v(,.f ('ll" T'J

151 * 0 7) o inko= .V :~.f p, rL~ K1

'~ 1* 1'~ fnpipI1Fr r T F-P'i T To (114 VvFP ON '.1S
* t O'~ QF T I PiN

P*rr.ak F0PrF ST1 ATFIAFNTS.

r'? ' F nlrF TN.K wtTT4 PATTFiIN;

C,1t ht~ F nwr F RI-rT viTT' PATTFPij;P?,IM'VFQT
c;;)I) 0 F o 4 rF DATAT 'TT'i PATTF'RN~iI7

it,? A 1fA T ?.w 1 ;4T I i Ar Ar - IT P AT TEON

S? AOO 0 TiF TlcZv flt(f

G; , nI f"(I T M*1 F 11 %4,***)*V**F*-* ***(10**t**f*** **f

S ;1111l~ Lf)Ai0 FwI.," rO'1F /7Q00'TO'1 A1.1IN I4T H F C A

S,;*OcOOI -V RIGISTEq(c1'h1 To' AjL- WITH4 FIC4
10 nior TNJt4J T IS IvT'm nfJF

n n 0 SF T I l ? . cV L IN 'AnIflILF SUPPL Y

1) nA (111 VS7:?P'%V erAT m
1) () a 1)'1) -ATT SnYA'
nO f) r,A j It v \/!7 1 R,'

hA0 mf) t P44INTr fN,"VfILTA(rF FIpr nN In4O m~n?1LE 9SuPPLY*
An~nqip) Pw.TNYT rsQ.urrqr ARA'?TFOP

Hn 0.flfl A A 14 10r =I

G- 9

I.~4~l I P(T 7 1fI oo i~ in*17
Af Itf P' i rI wT f 0-' "C -4Ff -T F w n ~P nl~ Ki fl)f An 0() IL F 3 PLY"

G- 10

L I'f0 1i 'RA r A') pAT()ITP/T PI

I.0 nono I A; A T A 01 AOOsP/IIATA INPIIT

3.00n0(0 L 6 x A I A 1)? AM) Rf)lA T A TNJPIiT
a nn 0 a0A7 A T A 1) A FlOPnOA TA T NPi JT
c; l n a iZATI T at) A MDQ/()A TA 1 NP U 7
IS()(1) ;0)y TAOS ArnrP/nATA TNPIIT
7.0A0 h7 A T T a o A I) 0A T A TNJPIJT
A.OoflO SAWAT IA-)7 AnIOR/O)ATA INPUJT
Q .A (4)0 6?)(A T T A 08 AnnFirA T A T NPU T
10.n000 3vya1 TAn9 Anfw/r)ATA TNPIIT
I1I,0non S-vAT T Al 10 Anr)/I)A TA INPIIT
12.0000 Q6%A I I At)t I AnOP/IGATA I NP UT
13,.o000 tlYAl 7Ar)1? AGD[Q/OATA INPIIT
14 .00 nt o I3A'AT 1Ar)13 Arf)fP/D)ATA TNPlIT
I c;.0000n A XA I T AD 14 Afl)/nATA TNPIUT
16.0000 1 iY AT I Ar) 1 Af)O)P/OATA INP11T
I 7.A00O h i7 An (A 1 An0OR/OATA OIITPbsT
IR.0n0 U3 Y A f nA0I AnnR/IlATA ni#TPiiT
19.0010 aSw A1) 0 A OP AnOR/nATA OuITPIuT
20(10000 1) 7YAO n A13 AonrATA OUTPUT
?1.0000o 93A A 0 OA 1)4 A1))P / DA Ta AOUTPIUT
20 00A0 139,xA 0 fA1) 5 Annw/O)ATA OIITPUT

2 3. 000f)0 S S Y A nAl AOn I OR / 0A TA OjTPIIT
? 4.00 a)n 9tAO 0 AO 17 nfR/D)ATA OUTPOT
25.000o 6 1 AA Il (A f) A nR / DA TA OU)T P IIT
2 6. 0n(I ? XAO 0 A04 AOIIR/(ATA 0111TPIIT
;?7 . no000 l J7 Ao OA D10 AOOnR/O)ATA n UTPU()T

?5.ooon 6 XA 0 ClA')11 ArOOR/nATA OIJTPUT
?9. noon iow an Oal012 ArlflP/r)ATA OUTPUIT
30 ,011A') 0 1 P?7AO 0 A01 A AhOOP/DA TA M~JTPIIT

-it 1.00 ono I7AAo OAot 4 ADDnR/rAT A nITPUjT
32.11090 1 UAU) OA01 5 AnOOP/OATA OUJTPIUT
33.0000 hlyAJ SlI)P STOP
344.0000 Sl YAT ml 1 MT CPnI,N
35.0000o 7YAT VT VFCTlRFfl INTERRiUPT
36.0001 A?Aj NVT '.urINVFCTnRFfl TINTFRRPT
37.0o01) 16?AT SI-G SFGlMENT TRAP

35.0000 19YAT N~mT NflNwMASKAR.LE INTFRpiUPT
39.0000 207AT RESET RESFT

40.00 37AT HIIS REQIUEST
41 . 00 q0 39YAT bswAr T ATT
cl?'0n0 41*AT CL'K CLnrlv

4141111A~f 23YAO 0 F MFmnwy QF-QIjFSr
4-.10A ?O7An nspI nATA qTRARE REAn

G- 11

'I A n 0 0))A I r1 q T A T 1
it 7 n n I() P 7 y STI 9RT AT 115

it9 o1)n) NAn S T c; r AT I S

rSt nfle) 7AItx'in 1;14. R SF G OF (T M~iPmRF6

rj A) ", A Q S'? ,%FrAF N, T N lImIqFE

*; nn coy4 i- qpF Wj r N I I VAF P
-% AnIn 6 n A i I qo4 s F (; k4F NT NII'flFQ

C AI) .1P4 A0 r 14PFAru/'RTTF

I) 9x Al N.Ilo4wmAL /SYSTFM4 mnlfl

; yAI V ~Y T F If -oy
61non xA i v r cSilpoly VnLTAflE

?ls1 a0 11' OAT6 lTQnnF *4rF
hibanoo it I5 f tr)4) AT A 5TQOHF ~NP I IT /f1 J T I T

os e 0 00 A j n A i A 8AOD)PFSS.' STPnPF

G- 12

MISSION
Of

Rome Air Development Center
PAVC ptans and execute-6 'teotch, devetopmnt, tea and
6 etected acquisition pktogtam6 in 6appwrt o6 Command, Contkt
Commnication6 and Inte~iqence (C31) a t&,sie. rechnicat
and engineeting 6uppo'Lt within a~'ea.6 oj technicat competence
is ptovided to ESP) PLog'wm 064ice (PO.6) and othe& ESO
etement6. The ptncApat technicat mi.6on a/tea,6 aAe
communict.on6, eitect~tomaqnetic guidance and ctontot, .6wt-
v'e.ittance o6 gtound and aeto.6pace. object6, inteCZiqence data
cottection and handting, in~o'wation 6y,6tem technotogy,
ionospheric p~opaqation, 46otid .6tate. 6cience,6, rAicAokv~e
phy.6c.6 and etect~onc ke.Uabitity, maintaiabZiiy and
compatibitity.

